The donor substrate specificity β1,3-glucuronosyltransferase I toward UDP-glucoronic acid is determined by two crucial histidine and arginine residues

被引:40
作者
Ouzzine, M [1 ]
Gulberti, S [1 ]
Levoin, N [1 ]
Netter, P [1 ]
Magdalou, J [1 ]
Fournel-Gigleux, S [1 ]
机构
[1] Univ Henri Poincare Nancy 1, Fac Med, CNRS, UMR 7561, F-54505 Vandoeuvre Les Nancy, France
关键词
D O I
10.1074/jbc.M201912200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The human beta1,3-glucuronosyltransferase I (GlcAT-I) plays a key role in proteoglycan biosynthesis by catalyzing the transfer of glucuronic acid onto the trisaccharide-protein linkage structure Galbeta1,3Galbeta1,4Xylbeta-O-Ser, a prerequisite step for polymerization of glycosaminoglycan chains. In this study, we identified His(308) and Arg(277) residues as essential determinants for the donor substrate (UDP-glucuronic acid) selectivity of the human GleAT-I. Analysis of the UDP-glucuronic acid-binding site by computational modeling in conjunction with site-directed mutagenesis indicated that both residues interact with glucuronic acid. Substitution of His(308) by arginine induced major changes in the donor substrate specificity of GlcAT-I. Interestingly, the H308R mutant was able to efficiently utilize nucleotide sugars LTDP-glucose, LTDP-mannose, and LTDP-N-acetylglucosamine, which are not naturally accepted by the wild-type enzyme, as co-substrate in the transfer reaction. To gain insight into the role of Arg277, site-directed mutagenesis in combination with chemical modification was carried out. Substitution of Are 77 with alanine abrogated the activity of GlcAT-I. Furthermore, the arginine-directed reagent 2,3-butanedione irreversibly inhibited GlcAT-I, which was effectively protected against inactivation by UDP-glucuronic acid but not by UDP-glucose. It is noteworthy that the activity of the H308R mutant toward UDP-glucose was unaffected by the arginine-directed reagent. Our results are consistent with crucial interactions between the His(308). and Arg(277) residues and the glucuronic acid moiety that governs the specificity of GlcAT-1 toward the nucleotide sugar donor substrate.
引用
收藏
页码:25439 / 25445
页数:7
相关论文
共 37 条
[1]   Chinese hamster ovary cell mutants defective in glycosaminoglycan assembly and glucuronosyltransferase I [J].
Bai, XM ;
Wei, G ;
Sinha, A ;
Esko, JD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (19) :13017-13024
[2]   Structure, mechanism and engineering of a nucleotidylyltransferase as a first step toward glycorandomization [J].
Barton, WA ;
Lesniak, J ;
Biggins, JB ;
Jeffrey, PD ;
Jiang, JQ ;
Rajashankar, KR ;
Thorson, JS ;
Nikolov, DB .
NATURE STRUCTURAL BIOLOGY, 2001, 8 (06) :545-551
[3]   Conversion of the maltogenic α-amylase Novamyl into a CGTase [J].
Beier, L ;
Svendsen, A ;
Andersen, C ;
Frandsen, TP ;
Borchert, TV ;
Cherry, JR .
PROTEIN ENGINEERING, 2000, 13 (07) :509-513
[4]   Functions of cell surface heparan sulfate proteoglycans [J].
Bernfield, M ;
Götte, M ;
Park, PW ;
Reizes, O ;
Fitzgerald, ML ;
Lincecum, J ;
Zako, M .
ANNUAL REVIEW OF BIOCHEMISTRY, 1999, 68 :729-777
[5]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[6]   Structure/function studies of glycosyltransferases [J].
Breton, C ;
Imberty, A .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 1999, 9 (05) :563-571
[7]   Bovine α1,3-galactosyltransferase catalytic domain structure and its relationship with ABO histo-blood group and glycosphingolipid glycosyltransferases [J].
Gastinel, LN ;
Bignon, C ;
Misra, AK ;
Hindsgaul, O ;
Shaper, JH ;
Joziasse, DH .
EMBO JOURNAL, 2001, 20 (04) :638-649
[8]  
Gouze JN, 2001, ARTHRITIS RHEUM, V44, P351, DOI 10.1002/1529-0131(200102)44:2<351::AID-ANR53>3.3.CO
[9]  
2-D
[10]   SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling [J].
Guex, N ;
Peitsch, MC .
ELECTROPHORESIS, 1997, 18 (15) :2714-2723