On the non-existence of certain curves of genus two

被引:6
作者
Howe, EW [1 ]
机构
[1] Ctr Commun Res, San Diego, CA 92121 USA
关键词
curve; abelian surface; zeta function; class group; Brauer relations;
D O I
10.1112/S0010437X03000757
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that if q is a power of an odd prime, then there is no genus-2 curve over F-q whose Jacobian has characteristic polynomial of Frobenius equal to x(4)+(2-2q)x(2)+q(2). Our proof uses the Brauer relations in a biquadratic extension of Q to show that every principally polarized abelian surface over F-q with the given characteristic polynomial splits over F-q 2 as a product of polarized elliptic curves.
引用
收藏
页码:581 / 592
页数:12
相关论文
共 10 条
[1]  
[Anonymous], 1991, CAMBRIDGE STUDIES AD
[2]  
Dedekind R., 1877, FESTSCHRIFT TECHNISC, P1
[3]   ORDINARY ABELIAN VARIETIES OVER FINITE FIELDS [J].
DELIGNE, P .
INVENTIONES MATHEMATICAE, 1969, 8 (03) :238-&
[4]  
Deuring M., 1941, ABH MATH SEM HAMBURG, V14, P197
[5]   PRINCIPALLY POLARIZED ORDINARY ABELIAN-VARIETIES OVER FINITE-FIELDS [J].
HOWE, EW .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 347 (07) :2361-2401
[6]   A hyperelliptic smoothness test, II [J].
Lenstra, HW ;
Pila, J ;
Pomerance, C .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2002, 84 :105-146
[7]   Abelian surfaces over finite fields as Jacobians [J].
Maisner, D ;
Nart, E ;
Howe, EW .
EXPERIMENTAL MATHEMATICS, 2002, 11 (03) :321-337
[8]  
RUCK HG, 1990, COMPOS MATH, V76, P351
[9]   GENERALIZATION OF A THEOREM OF SIEGEL [J].
SANDS, JW .
ACTA ARITHMETICA, 1991, 58 (01) :47-57
[10]  
Tate John, 1971, LECT NOTES MATH, V175, P95