Numerical Results for Snaking of Patterns over Patterns in Some 2D Selkov-Schnakenberg Reaction-Diffusion Systems

被引:42
作者
Uecker, Hannes [1 ]
Wetzel, Daniel [1 ]
机构
[1] Carl von Ossietzky Univ Oldenburg, Inst Math, D-26111 Oldenburg, Germany
来源
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS | 2014年 / 13卷 / 01期
关键词
Turing patterns; pinning; snaking; Ginzburg-Landau approximation; Maxwell point; EXPONENTIAL ASYMPTOTICS; LOCALIZED STATES; SELECTION;
D O I
10.1137/130918484
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a Selkov-Schnakenberg model as a prototype reaction-diffusion system on two dimensional domains, we use the continuation and bifurcation software pde2path to numerically calculate branches of patterns embedded in patterns, for instance hexagons embedded in stripes and vice versa, with a planar interface between the two patterns. We use the Ginzburg-Landau reduction to approximate the locations of these branches by Maxwell points for the associated Ginzburg-Landau system. For our basic model, some but not all of these branches show a snaking behavior in parameter space, over the given computational domains. The (numerical) nonsnaking behavior appears to be related to too narrow bistable ranges with rather small Ginzburg-Landau energy differences. This claim is illustrated by a suitable generalized model. Besides the localized patterns with planar interfaces we also give a number of examples of fully localized patterns over patterns, for instance hexagon patches embedded in radial stripes, and fully localized hexagon patches over straight stripes.
引用
收藏
页码:94 / 128
页数:35
相关论文
共 43 条
  • [1] [Anonymous], 2013, Mathematical Biology
  • [2] [Anonymous], 2006, Patterns and Interfaces in Dissipative Dynamics
  • [3] To Snake or Not to Snake in the Planar Swift-Hohenberg Equation
    Avitabile, Daniele
    Lloyd, David J. B.
    Burke, John
    Knobloch, Edgar
    Sandstede, Bjoern
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2010, 9 (03): : 704 - 733
  • [4] SNAKES, LADDERS, AND ISOLAS OF LOCALIZED PATTERNS
    Beck, Margaret
    Knobloch, Juergen
    Lloyd, David J. B.
    Sandstede, Bjoern
    Wagenknecht, Thomas
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2009, 41 (03) : 936 - 972
  • [5] Eckhaus instability and homoclinic snaking
    Bergeon, A.
    Burke, J.
    Knobloch, E.
    Mercader, I.
    [J]. PHYSICAL REVIEW E, 2008, 78 (04):
  • [6] Bollerman P., 1995, Nonlinear Dynamics and Pattern Formation in the Natural Environment, P20
  • [7] Local theory of the slanted homoclinic snaking bifurcation diagram
    Bortolozzo, U.
    Clerc, M. G.
    Residori, S.
    [J]. PHYSICAL REVIEW E, 2008, 78 (03):
  • [8] Homoclinic snaking: Structure and stability
    Burke, John
    Knobloch, Edgar
    [J]. CHAOS, 2007, 17 (03)
  • [9] Localized states in the generalized Swift-Hohenberg equation
    Burke, John
    Knobloch, Edgar
    [J]. PHYSICAL REVIEW E, 2006, 73 (05):
  • [10] Localized States in an Extended Swift-Hohenberg Equation
    Burke, John
    Dawes, Jonathan H. P.
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2012, 11 (01): : 261 - 284