Sub-surface AFM imaging using tip generated stress and electric fields

被引:23
作者
Cadena, Maria J. [1 ,2 ]
Chen, Yuhang [3 ]
Reifenberger, Ronald G. [2 ,4 ]
Raman, Arvind [1 ,2 ]
机构
[1] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA
[2] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA
[3] Univ Sci & Technol China, Dept Precis Machinery & Precis Instrumentat, Hefei 230026, Anhui, Peoples R China
[4] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
ATOMIC-FORCE MICROSCOPY;
D O I
10.1063/1.4977837
中图分类号
O59 [应用物理学];
学科分类号
摘要
It is well known that sub-surface nano-objects can be detected by Atomic Force Microscopy (AFM) with either sub-surface stress or electric fields, by using dynamic AFM methods such as Contact Resonance AFM (CR-AFM) or 2 nd -harmonic Kelvin Probe Force Microscopy (KPFM), respectively. However, little is understood regarding the relative differences between the two methods. We present a head-to-head comparison between the sub-surface imaging capabilities of these two methods through experiments and computational models based on finite element analysis (FEA). High resolution subsurface images are obtained using both techniques, from the same area of a polymer composite film containing single-walled carbon nanotube networks embedded in a polyimide matrix. The results are used to interpret quantitatively the observables from CR-AFM and KPFM, with a particular focus on the depth sensitivity and lateral resolution. The depth of the buried carbon nanotube bundles estimated by combining experiments and FEA is found to be in good agreement between the two methods. Published by AIP Publishing.
引用
收藏
页数:5
相关论文
共 27 条
  • [1] Depth-Sensitive Subsurface Imaging of Polymer Nanocomposites Using Second Harmonic Kelvin Probe Force Microscopy
    Alejandro Castaneda-Uribe, Octavio
    Reifenberger, Ronald
    Raman, Arvind
    Avila, Alba
    [J]. ACS NANO, 2015, 9 (03) : 2938 - 2947
  • [2] Local Organization of Graphene Network Inside Graphene/Polymer Composites
    Alekseev, Alexander
    Chen, Delei
    Tkalya, Evgeniy E.
    Ghislandi, Marcos G.
    Syurik, Yuliya
    Ageev, Oleg
    Loos, Joachim
    de With, Gijsbertus
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2012, 22 (06) : 1311 - 1318
  • [3] Numerical simulations of electrostatic interactions between an atomic force microscopy tip and a dielectric sample in presence of buried nano-particles
    Arinero, R.
    Riedel, C.
    Guasch, C.
    [J]. JOURNAL OF APPLIED PHYSICS, 2012, 112 (11)
  • [4] Sub-surface imaging of carbon nanotube-polymer composites using dynamic AFM methods
    Cadena, Maria J.
    Misiego, Rocio
    Smith, Kyle C.
    Avila, Alba
    Pipes, Byron
    Reifenberger, Ron
    Raman, Arvind
    [J]. NANOTECHNOLOGY, 2013, 24 (13)
  • [5] Nanoscale subsurface imaging via resonant difference-frequency atomic force ultrasonic microscopy
    Cantrell, Sean A.
    Cantrell, John H.
    Lillehei, Peter T.
    [J]. JOURNAL OF APPLIED PHYSICS, 2007, 101 (11)
  • [6] Nanoscale range finding of subsurface structures by measuring the absolute phase lag of thermal wave
    Chung, Jaehun
    Kim, Kyeongtae
    Hwang, Gwangseok
    Kwon, Ohmyoung
    Lee, Joon Sik
    Park, Seung Ho
    Choi, Young Ki
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2010, 81 (05)
  • [7] Visualizing the Subsurface of Soft Matter: Simultaneous Topographical Imaging, Depth Modulation, and Compositional Mapping with Triple Frequency Atomic Force Microscopy
    Ebeling, Daniel
    Eslami, Babak
    Solares, Santiago De Jesus
    [J]. ACS NANO, 2013, 7 (11) : 10387 - 10396
  • [8] Mapping of individual carbon nanotubes in polymer/nanotube composites using electrostatic force microscopy
    Jespersen, Thomas Sand
    Nygard, Jesper
    [J]. APPLIED PHYSICS LETTERS, 2007, 90 (18)
  • [9] Johnson K. L., 1987, Contact mechanics
  • [10] Quantitative subsurface contact resonance force microscopy of model polymer nanocomposites
    Killgore, Jason P.
    Kelly, Jennifer Y.
    Stafford, Christopher M.
    Fasolka, Michael J.
    Hurley, Donna C.
    [J]. NANOTECHNOLOGY, 2011, 22 (17)