On the Prolate Spheroidal Wave Functions and Hardy's Uncertainty Principle

被引:2
|
作者
Pauwels, Elmar [1 ]
de Gosson, Maurice [1 ]
机构
[1] Univ Vienna, Fac Math, NuHAG, Vienna, Austria
关键词
Hardy uncertainty principle; Prolate spheroidal wave functions; Fourier transform; Signal theory; FOURIER-ANALYSIS;
D O I
10.1007/s00041-014-9319-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a weak version of Hardy's uncertainty principle using properties of the prolate spheroidal wave functions. We describe the eigenvalues of the sum of a time limiting operator and a band limiting operator acting on . A weak version of Hardy's uncertainty principle follows from the asymptotic behavior of the largest eigenvalue as the time limit and the band limit approach infinity. An asymptotic formula for this eigenvalue is obtained from its well-known counterpart for the prolate integral operator.
引用
收藏
页码:566 / 576
页数:11
相关论文
共 50 条
  • [31] Spectral methods based on prolate spheroidal wave functions for hyperbolic PDEs
    Chen, QY
    Gottlieb, D
    Hesthaven, JS
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (05) : 1912 - 1933
  • [32] The universality of the prolate spheroidal wave functions for channel orthogonalization and its modeling
    Alcocer-Ochoa, A
    Parra-Michel, R
    Kontorovitch, VY
    2005 2ND INTERNATIONAL CONFERENCE ON ELECTRICAL & ELECTRONICS ENGINEERING (ICEEE), 2005, : 106 - 109
  • [33] Reconstruction of nonuniformly sampled time-limited signals using prolate spheroidal wave functions
    Senay, Seda
    Chaparro, Luis F.
    Durak, Lutfiye
    SIGNAL PROCESSING, 2009, 89 (12) : 2585 - 2595
  • [34] New efficient methods of computing the prolate spheroidal wave functions and their corresponding eigenvalues
    Karoui, Abderrazek
    Moumni, Tahar
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2008, 24 (03) : 269 - 289
  • [35] Reconstruction from the Fourier transform on the ball via prolate spheroidal wave functions
    Isaev, Mikhail
    Novikov, Roman G.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2022, 163 : 318 - 333
  • [36] Gaussian Bounds for the Heat Kernel Associated to Prolate Spheroidal Wave Functions with Applications
    Aline Bonami
    Gerard Kerkyacharian
    Pencho Petrushev
    Constructive Approximation, 2023, 57 : 351 - 403
  • [37] High-frequeney asymptotic expansions for certain Prolate Spheroidal Wave Functions
    Xiao, H
    Rokhlin, V
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2003, 9 (06) : 575 - 596
  • [38] Gaussian Bounds for the Heat Kernel Associated to Prolate Spheroidal Wave Functions with Applications
    Bonami, Aline
    Kerkyacharian, Gerard
    Petrushev, Pencho
    CONSTRUCTIVE APPROXIMATION, 2023, 57 (02) : 351 - 403
  • [39] Spectral analysis of the finite Hankel transform and circular prolate spheroidal wave functions
    Karoui, Abderrazek
    Moumni, Taher
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 233 (02) : 315 - 333
  • [40] Sound Field Reconstruction Using Prolate Spheroidal Wave Functions and Sparse Regularization
    Zhang, Xuxin
    Lou, Jingjun
    Zhu, Shijian
    Lu, Jinfang
    Li, Ronghua
    SENSORS, 2023, 23 (19)