On the Prolate Spheroidal Wave Functions and Hardy's Uncertainty Principle

被引:2
|
作者
Pauwels, Elmar [1 ]
de Gosson, Maurice [1 ]
机构
[1] Univ Vienna, Fac Math, NuHAG, Vienna, Austria
关键词
Hardy uncertainty principle; Prolate spheroidal wave functions; Fourier transform; Signal theory; FOURIER-ANALYSIS;
D O I
10.1007/s00041-014-9319-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a weak version of Hardy's uncertainty principle using properties of the prolate spheroidal wave functions. We describe the eigenvalues of the sum of a time limiting operator and a band limiting operator acting on . A weak version of Hardy's uncertainty principle follows from the asymptotic behavior of the largest eigenvalue as the time limit and the band limit approach infinity. An asymptotic formula for this eigenvalue is obtained from its well-known counterpart for the prolate integral operator.
引用
收藏
页码:566 / 576
页数:11
相关论文
共 50 条
  • [21] A new class of highly accurate differentiation schemes based on the prolate spheroidal wave functions
    Kong, Wai Yip
    Rokhlin, Vladimir
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2012, 33 (02) : 226 - 260
  • [22] RADIO ASTRONOMICAL IMAGE DECONVOLUTION USING PROLATE SPHEROIDAL WAVE FUNCTIONS
    Yatawatta, Sarod
    2011 18TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2011,
  • [23] Prolate spheroidal wave functions, Sonine spaces, and the Riemann zeta function
    Li, Xian-Jin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 389 (01) : 379 - 393
  • [24] Generalized Prolate Spheroidal Wave Functions: Spectral Analysis and Approximation of Almost Band-Limited Functions
    Karoui, Abderrazek
    Souabni, Ahmed
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2016, 22 (02) : 383 - 412
  • [25] Frequency Domain Multi-Carrier Modulation Based on Prolate Spheroidal Wave Functions
    Wang, Hongxing
    Lu, Faping
    Liu, Chuanhui
    Liu, Xiao
    Kang, Jiafang
    IEEE ACCESS, 2020, 8 (08): : 99665 - 99680
  • [26] Optimal data acquisition in MRI using prolate spheroidal wave functions
    Lindquist, MA
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2003, 13 (02) : 126 - 132
  • [27] A new friendly method of computing prolate spheroidal wave functions and wavelets
    Walter, G
    Soleski, T
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2005, 19 (03) : 432 - 443
  • [28] On hp-convergence of prolate spheroidal wave functions and a new well-conditioned prolate-collocation scheme
    Wang, Li-Lian
    Zhang, Jing
    Zhang, Zhimin
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 268 : 377 - 398
  • [29] Generation of diffuse acoustic modes using prolate spheroidal wave functions
    Van Hoorickx, C.
    Reynders, E.
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING (ISMA2020) / INTERNATIONAL CONFERENCE ON UNCERTAINTY IN STRUCTURAL DYNAMICS (USD2020), 2020, : 1695 - 1709
  • [30] UWB pulse design using the approximate prolate spheroidal wave functions
    Lu, Y
    Zhu, HB
    IEEE 2005 INTERNATIONAL SYMPOSIUM ON MICROWAVE, ANTENNA, PROPAGATION AND EMC TECHNOLOGIES FOR WIRELESS COMMUNICATIONS PROCEEDINGS, VOLS 1 AND 2, 2005, : 450 - 453