On the Prolate Spheroidal Wave Functions and Hardy's Uncertainty Principle

被引:2
|
作者
Pauwels, Elmar [1 ]
de Gosson, Maurice [1 ]
机构
[1] Univ Vienna, Fac Math, NuHAG, Vienna, Austria
关键词
Hardy uncertainty principle; Prolate spheroidal wave functions; Fourier transform; Signal theory; FOURIER-ANALYSIS;
D O I
10.1007/s00041-014-9319-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a weak version of Hardy's uncertainty principle using properties of the prolate spheroidal wave functions. We describe the eigenvalues of the sum of a time limiting operator and a band limiting operator acting on . A weak version of Hardy's uncertainty principle follows from the asymptotic behavior of the largest eigenvalue as the time limit and the band limit approach infinity. An asymptotic formula for this eigenvalue is obtained from its well-known counterpart for the prolate integral operator.
引用
收藏
页码:566 / 576
页数:11
相关论文
共 50 条
  • [1] On the Prolate Spheroidal Wave Functions and Hardy’s Uncertainty Principle
    Elmar Pauwels
    Maurice de Gosson
    Journal of Fourier Analysis and Applications, 2014, 20 : 566 - 576
  • [2] Uncertainty Principles, Prolate Spheroidal Wave Functions, and Applications
    Karoui, Abderrazek
    RECENT DEVELOPMENTS IN FRACTALS AND RELATED FIELDS, 2010, : 165 - 190
  • [3] Improved bounds for the eigenvalues of prolate spheroidal wave functions and discrete prolate spheroidal sequences
    Karnik, Santhosh
    Romberg, Justin
    Davenport, Mark A.
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2021, 55 : 97 - 128
  • [4] A generalization of the prolate spheroidal wave functions with applications to sampling
    Moumni, Tahar
    Zayed, Ahmed I.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2014, 25 (06) : 433 - 447
  • [5] Approximations in Sobolev spaces by prolate spheroidal wave functions
    Bonami, Aline
    Karoui, Abderrazek
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2017, 42 (03) : 361 - 377
  • [6] On the evaluation of prolate spheroidal wave functions and associated quadrature rules
    Osipov, Andrei
    Rokhlin, Vladimir
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2014, 36 (01) : 108 - 142
  • [7] Uniform Approximation and Explicit Estimates for the Prolate Spheroidal Wave Functions
    Bonami, Aline
    Karoui, Abderrazek
    CONSTRUCTIVE APPROXIMATION, 2016, 43 (01) : 15 - 45
  • [8] Ball prolate spheroidal wave functions in arbitrary dimensions
    Zhang, Jing
    Li, Huiyuan
    Wang, Li-Lian
    Zhang, Zhimin
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2020, 48 (02) : 539 - 569
  • [9] Unidimensional and bidimensional prolate spheroidal wave functions and applications
    Karoui, Abderrazek
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2011, 348 (07): : 1668 - 1694
  • [10] Frame properties of shifts of prolate spheroidal wave functions
    Hogan, Jeffrey A.
    Lakey, Joseph D.
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2015, 39 (01) : 21 - 32