Comparison of methodologies to assess the convergence of Markov chain Monte Carlo methods

被引:54
|
作者
El Adlouni, Salaheddine [1 ]
Favre, Anne-Catherine [1 ]
Bobee, Bernard [1 ]
机构
[1] Univ Quebec, Ctr Eau Terre & Environm, Inst Natl Rech Sci, Chaire Hydrol Stat, Quebec City, PQ G1K 9A9, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
convergence; MCMC; Gibbs sampler; Gelman and Rubin; Yu and Mykland; Raftery and Lewis; Geweke; Riemann sums; subsampling; burn-in period;
D O I
10.1016/j.csda.2005.04.018
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
One major challenge with the modelization of complex problems using Markov chain Monte Carlo (MCMC) methods is the determination of the length of the chain in order to reach convergence. This paper is devoted to parametric empirical methods testing the stationarity. We compare the methods of Gelman and Rubin, Yu and Mykland, Raftery and Lewis, Geweke, Riemann sums and the subsampling. These methods are tested using three examples: the simple case of the generation of a normal random variable, a bivariate mixture of normal models and a practical case taken from hydrology, namely the shifting level model. Results show that no method works in every case. We therefore suggest a joint use of these techniques. The importance of determining carefully the burn-in period is also highlighted. (C) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:2685 / 2701
页数:17
相关论文
共 50 条
  • [21] Comprehensive benchmarking of Markov chain Monte Carlo methods for dynamical systems
    Ballnus, Benjamin
    Hug, Sabine
    Hatz, Kathrin
    Goerlitz, Linus
    Hasenauer, Jan
    Theis, Fabian J.
    BMC SYSTEMS BIOLOGY, 2017, 11
  • [22] Markov Chain Monte Carlo Methods for Estimating Systemic Risk Allocations
    Koike, Takaaki
    Hofert, Marius
    RISKS, 2020, 8 (01)
  • [23] Markov chain Monte Carlo methods3. Statistical concepts
    K. B. Athreya
    Mohan Delampady
    T. Krishnan
    Resonance, 2003, 8 (10) : 8 - 19
  • [24] Path Space Markov Chain Monte Carlo Methods in Computer Graphics
    Jakob, Wenzel
    MONTE CARLO AND QUASI-MONTE CARLO METHODS, 2016, 163 : 107 - 141
  • [25] Markov Chain Monte Carlo Methods for Fluid Flow Forecasting in the Subsurface
    Ali, Alsadig
    Al-Mamun, Abdullah
    Pereira, Felipe
    Rahunanthan, Arunasalam
    COMPUTATIONAL SCIENCE - ICCS 2020, PT VII, 2020, 12143 : 757 - 771
  • [26] Markov Chain Monte Carlo methods4. Statistical Applications
    K. B. Athreya
    Mohan Delampady
    T. Krishnan
    Resonance, 2003, 8 (12) : 18 - 32
  • [27] Bayesian Computation Via Markov Chain Monte Carlo
    Craiu, Radu V.
    Rosenthal, Jeffrey S.
    ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, VOL 1, 2014, 1 : 179 - 201
  • [29] Assessing the convergence of Markov Chain Monte Carlo methods: An example from evaluation of diagnostic tests in absence of a gold standard
    Toft, Nils
    Innocent, Giles T.
    Gettinby, George
    Reid, Stuart W. J.
    PREVENTIVE VETERINARY MEDICINE, 2007, 79 (2-4) : 244 - 256
  • [30] Identifiability and convergence behavior for Markov chain Monte Carlo using multivariate probit models
    Zhang, Xiao
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024,