Regularity 3 in edge ideals associated to bipartite graphs

被引:30
作者
Fernandez-Ramos, Oscar [1 ]
Gimenez, Philippe [2 ]
机构
[1] Univ Genoa, Dipartimento Matemat, I-16146 Genoa, Italy
[2] Univ Valladolid, Fac Ciencias, Dept Algebra Anal Matemat Geometria & Topol, E-47011 Valladolid, Spain
关键词
Edge ideal; Bipartite graph; Castelnuovo-Mumford regularity; Graded Betti numbers; Independence complex; Stanley-Reisner ideal; RESOLUTIONS; SYZYGIES;
D O I
10.1007/s10801-013-0473-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We focus in this paper on edge ideals associated to bipartite graphs and give a combinatorial characterization of those having regularity 3. When the regularity is strictly bigger than 3, we determine the first step i in the minimal graded free resolution where there exists a minimal generator of degree > i+3, show that at this step the highest degree of a minimal generator is i+4, and determine the corresponding graded Betti number beta (i,i+4) in terms of the combinatorics of the graph. The results are then extended to the non-square-free case through polarization. We also study a family of ideals of regularity 4 that play an important role in our main result and whose graded Betti numbers can be completely described through closed combinatorial formulas.
引用
收藏
页码:919 / 937
页数:19
相关论文
共 21 条
[1]  
[Anonymous], 1990, TOPICS ALGEBRA
[2]  
[Anonymous], ARXIVMATHAC0501226
[3]  
[Anonymous], ARXIV13036214
[4]  
[Anonymous], COMMUN ALGE IN PRESS
[5]  
Avramov LL, 2010, MATH RES LETT, V17, P197
[6]  
Bjorner A., 1995, HDB COMBINATORICS, V1, P1819
[7]  
Corso A, 2009, T AM MATH SOC, V361, P1371
[8]  
Diestel Reinhard, 2017, Graduate Texts in Mathematics, V173
[9]   Restricting linear syzygies: algebra and geometry [J].
Eisenbud, D ;
Green, M ;
Hulek, K ;
Popescu, S .
COMPOSITIO MATHEMATICA, 2005, 141 (06) :1460-1478
[10]   FIRST NONLINEAR SYZYGIES OF IDEALS ASSOCIATED TO GRAPHS [J].
Fernandez-Ramos, Oscar ;
Gimenez, Philippe .
COMMUNICATIONS IN ALGEBRA, 2009, 37 (06) :1921-1933