Multiple positive solutions to a class of modified nonlinear Schrodinger equations

被引:4
作者
Chen, Jianqing [1 ]
机构
[1] Fujian Normal Univ, Sch Math & Comp Sci, Fuzhou 350108, Peoples R China
关键词
Variational methods; Modified nonlinear Schrodinger equation; Sign changing nonlinearity; Multiple positive solutions; LINEAR ELLIPTIC-EQUATIONS; ARBITRARY SPACE DIMENSION; LOCAL WELL-POSEDNESS; SOLITON-SOLUTIONS; R-N; PERTURBATION METHOD; CRITICAL GROWTH; STANDING WAVES; THOMAS-FERMI; EXISTENCE;
D O I
10.1016/j.jmaa.2014.01.067
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the existence and multiplicity of positive solutions of the following equation -u '' + u - 2((vertical bar u vertical bar(2)''))u = a(x)vertical bar u vertical bar(p-2)u + lambda k(x)u where u is an element of H-1(R). We will prove that the modified term 2((vertical bar u vertical bar(2))'')u is helpful to find multiple positive solutions in the case of the nonlinearity with sign changing coefficient a(x). Surprisingly, we do not need a sign condition integral(N)(R) a(x)e(1)(p) dx < 0, which has been proven to be a necessary condition to the existence of positive solutions for semilinear elliptic equations with sign changing nonlinearity (Alama and Tarantello (1993) [1]). (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:525 / 542
页数:18
相关论文
共 41 条
[1]   ON SEMILINEAR ELLIPTIC-EQUATIONS WITH INDEFINITE NONLINEARITIES [J].
ALAMA, S ;
TARANTELLO, G .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1993, 1 (04) :439-475
[2]   MULTI-BUMP SOLUTIONS FOR A CLASS OF QUASILINEAR EQUATIONS ON R [J].
Alves, Claudianor O. ;
Miyagaki, Olimpio H. ;
Soares, Sergio H. M. .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2012, 11 (02) :829-844
[3]   On the existence and concentration of positive solutions to a class of quasilinear elliptic problems on R [J].
Alves, Claudianor O. ;
Miyagaki, Olimpio H. ;
Monari Soares, Sergio H. .
MATHEMATISCHE NACHRICHTEN, 2011, 284 (14-15) :1784-1795
[4]  
Ambrosetti A, 2003, DISCRETE CONT DYN-A, V9, P55
[5]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[6]  
Aubin T., 1984, APPL NONLINEAR ANAL
[7]   THE THOMAS-FERMI-VONWEIZSACKER THEORY OF ATOMS AND MOLECULES [J].
BENGURIA, R ;
BREZIS, H ;
LIEB, EH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 79 (02) :167-180
[8]   Soliton solutions for quasilinear Schrodinger equations with critical growth [J].
Bezerra do O, Joao M. ;
Miyagaki, Olimpio H. ;
Soares, Sergio H. M. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (04) :722-744
[9]  
Borovskii A. V., 1993, Journal of Experimental and Theoretical Physics, V77, P562
[10]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490