Thermoelectric properties of tetrahedrally bonded wide-gap stannite compounds Cu2ZnSn1-xInxSe4

被引:234
作者
Shi, X. Y. [1 ,2 ]
Huang, F. Q. [1 ]
Liu, M. L. [1 ,2 ]
Chen, L. D. [1 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China
[2] Chinese Acad Sci, Grad Univ, Beijing, Peoples R China
基金
美国国家科学基金会;
关键词
copper compounds; energy gap; indium compounds; semiconductor doping; ternary semiconductors; thermal conductivity; thermoelectricity; tin compounds; wide band gap semiconductors; zinc compounds; TEMPERATURE; DEVICES;
D O I
10.1063/1.3103604
中图分类号
O59 [应用物理学];
学科分类号
摘要
It is usually accepted that good thermoelectric (TE) materials should be narrow-gap semiconductors. Here we show an example that the tetrahedrally bonded stannite compound Cu2ZnSnSe4 with a band gap of 1.44 eV can also exhibit a high figure of merit at intermediate temperature. The highly distorted structure strives for the relatively low thermal conductivity, and the tunability of the electrical properties were demonstrated through doping. The maximum ZT of Cu2ZnSn0.90In0.10Se4 reaches 0.95 at 850 K. This work may open a way for exploring high-performance TE materials with the family of widely existing tetrahedrally bonded semiconductors.
引用
收藏
页数:3
相关论文
共 18 条
  • [1] Effect of post-deposition annealing on the growth of Cu2ZnSnSe4 thin films for a solar cell absorber layer
    Babu, G. Suresh
    Kumar, Y. B. Kishore
    Bhaskar, P. Uday
    Raja, V. Sundara
    [J]. SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2008, 23 (08) : 085023
  • [2] Berger L. I., 1997, SEMICONDUCTOR MAT, P264
  • [3] Enhanced thermoelectric performance in PbTe-based superlattice structures from reduction of lattice thermal conductivity
    Caylor, JC
    Coonley, K
    Stuart, J
    Colpitts, T
    Venkatasubramanian, R
    [J]. APPLIED PHYSICS LETTERS, 2005, 87 (02)
  • [4] Powder metallurgical processing of functionally graded p-Pb1-xSnxTe materials for thermoelectric applications
    Gelbstein, Y.
    Dashevsky, Z.
    Dariel, M. P.
    [J]. PHYSICA B-CONDENSED MATTER, 2007, 391 (02) : 256 - 265
  • [5] Goldsmid H. J., 1964, ELECT REFRIGERATION, P57
  • [6] HALL SR, 1978, CANADIAN MINERALOGIS, V0016
  • [7] Quantum dot superlattice thermoelectric materials and devices
    Harman, TC
    Taylor, PJ
    Walsh, MP
    LaForge, BE
    [J]. SCIENCE, 2002, 297 (5590) : 2229 - 2232
  • [8] Mahan G.D., 1998, SOLID STATE PHYS, V51
  • [9] Structural, thermodynamical and optical properties Of Cu2-II-IV-VI4 quaternary compounds
    Matsushita, H
    Ichikawa, T
    Katsui, A
    [J]. JOURNAL OF MATERIALS SCIENCE, 2005, 40 (08) : 2003 - 2005
  • [10] Monograin materials for solar cells
    Mellikov, E.
    Meissner, D.
    Varema, T.
    Altosaar, M.
    Kauk, M.
    Volobujeva, O.
    Raudoja, J.
    Timmo, K.
    Danilson, M.
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2009, 93 (01) : 65 - 68