Macroscopic and tunable nanoparticle superlattices

被引:58
|
作者
Zhang, Honghu [1 ,2 ]
Wang, Wenjie [3 ]
Mallapragada, Surya [1 ,4 ]
Travesset, Alex [1 ,5 ]
Vaknin, David [1 ,5 ]
机构
[1] Iowa State Univ, Ames Lab, Ames, IA 50011 USA
[2] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA
[3] US DOE, Div Mat Sci & Engn, Ames Lab, Ames, IA 50011 USA
[4] Iowa State Univ, Dept Chem & Biol Engn, Ames, IA 50011 USA
[5] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA
关键词
AQUEOUS BIPHASIC SYSTEMS; DNA-CAPPED NANOPARTICLES; GOLD NANOPARTICLES; POLY(ETHYLENE OXIDE); POLYETHYLENE-GLYCOL; CURVED SURFACES; POLYMER BRUSHES; 2-PHASE SYSTEMS; SALT; CRYSTALLIZATION;
D O I
10.1039/c6nr07136h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We describe a robust method to assemble nanoparticles into highly ordered superlattices by inducing aqueous phase separation of neutral capping polymers. Here we demonstrate the approach with thiolated polyethylene-glycol-functionalized gold nanoparticles (PEG-AuNPs) in the presence of salts (for example, K2CO3) in solutions that spontaneously migrate to the liquid-vapor interface to form a Gibbs monolayer. We show that by increasing salt concentration, PEG-AuNP monolayers transform from two-dimensional (2D) gas-like to liquid-like phase and eventually, beyond a threshold concentration, to a highly ordered hexagonal structure, as characterized by surface sensitive synchrotron X-ray reflectivity and grazing incidence X-ray diffraction. Furthermore, the method allows control of the inplane packing in the crystalline phase by varying the K2CO3 and PEG-AuNPs concentrations and the length of PEG. Using polymer-brush theory, we argue that the assembly and crystallization is driven by the need to reduce surface tension between PEG and the salt solution. Our approach of taking advantage of the phase separation of PEG in salt solutions is general (i.e., can be used with any nanoparticles) leads to high-quality macroscopic and tunable crystals. Finally, we discuss how the method can also be applied to the design of orderly 3D structures.
引用
收藏
页码:164 / 171
页数:8
相关论文
共 50 条
  • [21] Dynamically Interchangeable Nanoparticle Superlattices Through the Use of Nucleic Acid-Based Allosteric Effectors
    Kim, Youngeun
    Macfarlane, Robert J.
    Mirkin, Chad A.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (28) : 10342 - 10345
  • [22] DNA nanostructure-directed assembly of metal nanoparticle superlattices
    Julin, Sofia
    Nummelin, Sami
    Kostiainen, Mauri A.
    Linko, Veikko
    JOURNAL OF NANOPARTICLE RESEARCH, 2018, 20 (05)
  • [23] Nanoparticle Superlattices through Template-Encoded DNA Dendrimers
    Cheng, Ho Fung
    Distler, Max E.
    Lee, Byeongdu
    Zhou, Wenjie
    Weigand, Steven
    Mirkin, Chad A.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (41) : 17170 - 17179
  • [24] Three-dimensional DNA-programmable nanoparticle superlattices
    Kahn, Jason S.
    Minevich, Brian
    Gang, Oleg
    CURRENT OPINION IN BIOTECHNOLOGY, 2020, 63 : 142 - 150
  • [25] Electrostatic assembly of binary nanoparticle superlattices using protein cages
    Kostiainen, Mauri A.
    Hiekkataipale, Panu
    Laiho, Ari
    Lemieux, Vincent
    Seitsonen, Jani
    Ruokolainen, Janne
    Ceci, Pierpaolo
    NATURE NANOTECHNOLOGY, 2013, 8 (01) : 52 - +
  • [26] Tunable Multiscale Nanoparticle Ordering by Polymer Crystallization
    Zhao, Dan
    Gimenez-Pinto, Vianney
    Jimenez, Andrew M.
    Zhao, Longxi
    Jestin, Jacques
    Kumar, Sanat K.
    Kuei, Brooke
    Gomez, Enrique D.
    Prasad, Aditya Shanker
    Schadler, Linda S.
    Khani, Mohammad M.
    Benicewicz, Brian C.
    ACS CENTRAL SCIENCE, 2017, 3 (07) : 751 - 758
  • [27] In Situ Electron Microscopy Imaging and Quantitative Structural Modulation of Nanoparticle Superlattices
    Kim, Juyeong
    Jones, Matthew R.
    Ou, Zihao
    Chen, Qian
    ACS NANO, 2016, 10 (11) : 9801 - 9808
  • [28] Switching binary states of nanoparticle superlattices and dimer clusters by DNA strands
    Maye, Mathew M.
    Kumara, Mudalige Thilak
    Nykypanchuk, Dmytro
    Sherman, William B.
    Gang, Oleg
    NATURE NANOTECHNOLOGY, 2010, 5 (02) : 116 - 120
  • [29] Investigation on the self-assembly of gold nanoparticles into bidisperse nanoparticle superlattices
    Ji, Na
    Chen, Yuanzhi
    Gong, Pingyun
    Cao, Keyan
    Peng, Dong-Liang
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2015, 480 : 11 - 18
  • [30] Nanoparticle-Hydrogel Composites: From Molecular Interactions to Macroscopic Behavior
    Dannert, Corinna
    Stokke, Bjorn Torger
    Dias, Rita S.
    POLYMERS, 2019, 11 (02)