A random dispersion Schrodinger equation with time-oscillating nonlinearity

被引:2
作者
Fang, Daoyuan [1 ]
Zhang, Linzi [1 ]
Zhang, Ting [1 ]
机构
[1] Zhejiang Univ, Dept Math, Hangzhou 310027, Zhejiang, Peoples R China
关键词
Random dispersion; Nonlinear Schrodinger equation; Time-oscillating nonlinearity;
D O I
10.1016/j.jmaa.2014.04.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the nonlinear Schrodinger equation with the random dispersion and time-oscillating nonlinearity, iut + 1/epsilon m (t/epsilon(2))partial derivative xx u + theta(t/epsilon(2)) vertical bar u vertical bar(2 sigma) u=0, x epsilon R, t > 0, sigma > 0, where m satisfying some ergodic conditions and theta a periodic function. We prove that the solution u(epsilon) converges as epsilon -> 0 to the solution of the limit equation idu+ partial derivative xx u o d beta + I (theta)vertical bar u vertical bar(2 sigma) udt =0 with the initial datum u(0) in H-1 (R). And the convergence holds in the sense of distribution in C([0, T]; H-1 (R)), T < T*(u(0)) almost surely, where T*(u(o)) is the maximal existence time for the limit equation. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:403 / 414
页数:12
相关论文
共 12 条
[1]   Controlling collapse in Bose-Einstein condensates by temporal modulation of the scattering length [J].
Abdullaev, FK ;
Caputo, JG ;
Kraenkel, RA ;
Malomed, BA .
PHYSICAL REVIEW A, 2003, 67 (01) :10
[2]  
Agrawal G. P., 2020, Applications of Nonlinear Fiber Optics, V3rd
[3]  
Agrawal G. P., 2001, NONLINEAR FIBER OPTI, V3rd
[4]   Continuous dependence for NLS in fractional order spaces [J].
Cazenave, Thierry ;
Fang, Daoyuan ;
Han, Zheng .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2011, 28 (01) :135-147
[5]   A Schrodinger equation with time-oscillating nonlinearity [J].
Cazenave, Thierry ;
Scialom, Marcia .
REVISTA MATEMATICA COMPLUTENSE, 2010, 23 (02) :321-339
[6]   Theory of Bose-Einstein condensation in trapped gases [J].
Dalfovo, F ;
Giorgini, S ;
Pitaevskii, LP ;
Stringari, S .
REVIEWS OF MODERN PHYSICS, 1999, 71 (03) :463-512
[7]   The nonlinear Schrodinger equation with white noise dispersion [J].
de Bouard, Anne ;
Debussche, Arnaud .
JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 259 (05) :1300-1321
[8]   1D quintic nonlinear Schrodinger equation with white noise dispersion [J].
Debussche, Arnaud ;
Tsutsumi, Yoshio .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2011, 96 (04) :363-376
[9]   A Schrodinger equation with time-oscillating critical nonlinearity [J].
Fang, Daoyuan ;
Han, Zheng .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (14) :4698-4708
[10]   Collapse of solutions of the nonlinear schrodinger equation with a time-dependent nonlinearity: Application to Bose-Einstein condensates [J].
Konotop, VV ;
Pacciani, P .
PHYSICAL REVIEW LETTERS, 2005, 94 (24)