Minimal Valid Inequalities for Integer Constraints

被引:55
作者
Borozan, Valentin [1 ]
Cornuejols, Gerard [1 ,2 ]
机构
[1] Univ Marseille, Fac Sci Luminy, LIF, F-13288 Marseille, France
[2] Carnegie Mellon Univ, Tepper Sch Business, Pittsburgh, PA 15213 USA
关键词
integer programming; lattice-free convex set; corner polyhedron;
D O I
10.1287/moor.1080.0370
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we consider a semi-infinite relaxation of mixed-integer linear programs. We show that minimal valid inequalities for this relaxation correspond to maximal lattice-free convex sets, and that they arise from nonnegative, piecewise linear, positively homogeneous, convex functions.
引用
收藏
页码:538 / 546
页数:9
相关论文
共 20 条
[1]  
Andersen K, 2007, LECT NOTES COMPUT SC, V4513, P1
[2]  
[Anonymous], 1963, Recent Advances in Mathematical Programming
[3]  
[Anonymous], 1972, Mathematical Programming, DOI DOI 10.1007/BF01585008
[4]   INTERSECTION CUTS - NEW TYPE OF CUTTING PLANES FOR INTEGER PROGRAMMING [J].
BALAS, E .
OPERATIONS RESEARCH, 1971, 19 (01) :19-+
[5]  
BASU A, 2009, MATH OPER R IN PRESS
[6]  
BASU A, 2008, E38 CARN MELL U TEPP
[7]  
BELL DE, 1977, STUD APPL MATH, V56, P187
[8]   CHVATAL CLOSURES FOR MIXED INTEGER PROGRAMMING-PROBLEMS [J].
COOK, W ;
KANNAN, R ;
SCHRIJVER, A .
MATHEMATICAL PROGRAMMING, 1990, 47 (02) :155-174
[9]  
CORNUEJOLS G, 2008, MATH PROGRAMMING
[10]  
Dey SS, 2008, LECT NOTES COMPUT SC, V5035, P463, DOI 10.1007/978-3-540-68891-4_32