Geometry of adaptive martensite in Ni-Mn- based Heusler alloys

被引:38
作者
Niemann, Robert [1 ]
Faehler, Sebastian [1 ,2 ]
机构
[1] IFW Dresden, Helmholtzstr 20, D-01069 Dresden, Germany
[2] Tech Univ Dresden, Inst Festkorperphys, Dresden, Germany
关键词
Shape memory alloy; Modulated martensite; Adaptive martensite; Ni-Mn-Ga; Twin boundary; MOBILE TWIN BOUNDARIES; SHAPE-MEMORY ALLOYS; GA MARTENSITE; CRYSTALS; NI2MNGA; PHASES; FILMS;
D O I
10.1016/j.jallcom.2017.01.189
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Modulated martensites play an important role in magnetic shape memory alloys, because all functional properties are closely connected to the twin microstructure and the phase boundary. The nature of the modulated martensites is still unclear. One approach is the concept of adaptive martensite, which regards all modulated phases as nanotwinned microstructures. In this article, we use the Ni-Mn-based shape memory alloys as an example to show the geometric rationale behind this concept using analytic equations based on the phenomenological theory of martensite. This could enhance discussions about the implications of the adaptive martensite by showing the exact relations between the various unit cells used to describe the structure. We use the concept to discuss the compatibility at the habit plane, the nature of high-order twin boundaries and the dependence of the lattice constants on the different types of modulation. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:280 / 288
页数:9
相关论文
共 35 条
  • [11] Differently mobile twin boundaries and magnetic shape memory effect in 10 M martensite of Ni-Mn-Ga
    Heczko, O.
    Kopecek, J.
    Straka, L.
    Seiner, H.
    [J]. MATERIALS RESEARCH BULLETIN, 2013, 48 (12) : 5105 - 5109
  • [12] Different microstructures of mobile twin boundaries in 10 M modulated Ni-Mn-Ga martensite
    Heczko, O.
    Straka, L.
    Seiner, H.
    [J]. ACTA MATERIALIA, 2013, 61 (02) : 622 - 631
  • [13] Fermi surface nesting and the origin of charge density waves in metals
    Johannes, M. D.
    Mazin, I. I.
    [J]. PHYSICAL REVIEW B, 2008, 77 (16)
  • [14] Modulated martensite: why it forms and why it deforms easily
    Kaufmann, S.
    Niemann, R.
    Thersleff, T.
    Roessler, U. K.
    Heczko, O.
    Buschbeck, J.
    Holzapfel, B.
    Schultz, L.
    Faehler, S.
    [J]. NEW JOURNAL OF PHYSICS, 2011, 13
  • [15] Adaptive Modulations of Martensites
    Kaufmann, S.
    Roessler, U. K.
    Heczko, O.
    Wuttig, M.
    Buschbeck, J.
    Schultz, L.
    Faehler, S.
    [J]. PHYSICAL REVIEW LETTERS, 2010, 104 (14)
  • [16] ADAPTIVE PHASE FORMATION IN MARTENSITIC-TRANSFORMATION
    KHACHATURYAN, AG
    SHAPIRO, SM
    SEMENOVSKAYA, S
    [J]. PHYSICAL REVIEW B, 1991, 43 (13): : 10832 - 10843
  • [17] Inverse magnetocaloric effect in ferromagnetic Ni-Mn-Sn alloys
    Krenke, T
    Duman, E
    Acet, M
    Wassermann, EF
    Moya, X
    Mañosa, L
    Planes, A
    [J]. NATURE MATERIALS, 2005, 4 (06) : 450 - 454
  • [18] Crystal structure of modulated martensite and crystallographic correlations between martensite variants of Ni50Mn38Sn12 alloy
    Lin, Chunqing
    Yan, Haile
    Zhang, Yudong
    Esling, Claude
    Zhao, Xiang
    Zuo, Liang
    [J]. JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2016, 49 : 1276 - 1283
  • [19] The Role of Adaptive Martensite in Magnetic Shape Memory Alloys
    Niemann, Robert
    Roessler, Ulrich K.
    Gruner, Markus E.
    Heczko, Oleg
    Schultz, Ludwig
    Faehler, Sebastian
    [J]. ADVANCED ENGINEERING MATERIALS, 2012, 14 (08) : 562 - 581
  • [20] Nishiyama Z., 1978, MARTENSITIC TRANSFOR