Existence of a new three-dimensional chaotic attractor

被引:21
作者
Wang, Jiezhi [1 ]
Chen, Zengqiang [1 ]
Yuan, Zhuzhi [1 ]
机构
[1] Nankai Univ, Dept Automat, Tianjin 300071, Peoples R China
关键词
SYSTEM; ORBITS;
D O I
10.1016/j.chaos.2009.04.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, one heteroclinic orbit of a new three-dimensional continuous autonomous chaotic system, whose chaotic attractor belongs to the conjugate Ut attractor, is found. The series expression of the heteroclinic orbit of Shil'nikov type is derived by using the undetermined coefficient method. The uniform convergence of the precise series expansions of this heteroclinic orbits is proved. According to the Shil'nikov theorem, this system clearly has Smale horseshoes and the horseshoe chaos. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3053 / 3057
页数:5
相关论文
共 20 条
[1]   On the generalized Lorenz canonical form [J].
Celikovsky, S ;
Chen, GR .
CHAOS SOLITONS & FRACTALS, 2005, 26 (05) :1271-1276
[2]   Yet another chaotic attractor [J].
Chen, GR ;
Ueta, T .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (07) :1465-1466
[3]   A single three-wing or four-wing chaotic attractor generated from a three-dimensional smooth quadratic autonomous system [J].
Chen, Zengqiang ;
Yang, Yong ;
Yuan, Zhuzhi .
CHAOS SOLITONS & FRACTALS, 2008, 38 (04) :1187-1196
[4]   Si'lnikov homoclinic orbits in a new chaotic system [J].
Jiang, Yongxin ;
Sun, Jianhua .
CHAOS SOLITONS & FRACTALS, 2007, 32 (01) :150-159
[5]  
LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO
[6]  
2
[7]   Bridge the gap between the Lorenz system and the Chen system [J].
Lü, JH ;
Chen, GR ;
Cheng, DZ ;
Celikovsky, S .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (12) :2917-2926
[8]   A new chaotic attractor coined [J].
Lü, JH ;
Chen, GR .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (03) :659-661
[9]   A four-wing chaotic attractor generated from a new 3-D quadratic autonomous system [J].
Qi, Guoyuan ;
Chen, Guanrong ;
van Wyk, Michael Antonie ;
van Wyk, Barend Jacobus ;
Zhang, Yuhui .
CHAOS SOLITONS & FRACTALS, 2008, 38 (03) :705-721
[10]   Analysis and circuit implementation of a new 4D chaotic system [J].
Qi, GY ;
Chen, GR .
PHYSICS LETTERS A, 2006, 352 (4-5) :386-397