Frame scaling function sets and frame wavelet sets in Rd

被引:3
作者
Liu, Zhanwei [1 ]
Hu, Guoen [1 ]
Wu, Guochang [2 ]
机构
[1] Univ Informat Engn, Dept Appl Math, Zhengzhou 450002, Henan, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Sci, Xian 710049, Shanxi, Peoples R China
关键词
HILBERT; BASES;
D O I
10.1016/j.chaos.2007.10.042
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we classify frame wavelet sets and frame scaling function sets in higher dimensions. Firstly, we obtain a necessary condition for it set to be the frame wavelet sets. Then, we present a necessary and sufficient condition for it set to be a frame scaling function set. We give a property of frame scaling function sets, too. Some corresponding examples are given to prove our theory in each section. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2483 / 2490
页数:8
相关论文
共 15 条
[1]   The theory of multiresolution analysis frames and applications to filter banks [J].
Benedetto, JJ ;
Li, SD .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1998, 5 (04) :389-427
[2]   Frame wavelet sets in Rd [J].
Dai, X ;
Diao, Y ;
Gu, Q ;
Han, D .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 155 (01) :69-82
[3]  
DAI X, 1998, MEM AM MATH SOC, V134, P640
[4]   Wavelet sets in R-n [J].
Dai, XD ;
Larson, DR ;
Speegle, DM .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1997, 3 (04) :451-456
[5]  
DAUBECHIES I, 1992, CBMS NSFREG C SERIES
[6]   A guide to the mathematics of E-infinity Cantorian spacetime theory [J].
El Naschie, MS .
CHAOS SOLITONS & FRACTALS, 2005, 25 (05) :955-964
[7]   Hilbert space, the number of Higgs particles and the quantum two-slit experiment [J].
El Naschie, MS .
CHAOS SOLITONS & FRACTALS, 2006, 27 (01) :9-13
[8]   Hilbert, Fock and Cantorian spaces in the quantum two-slit gedanken experiment [J].
El Naschie, MS .
CHAOS SOLITONS & FRACTALS, 2006, 27 (01) :39-42
[9]   A review of E infinity theory and the mass spectrum of high energy particle physics [J].
El Naschie, MS .
CHAOS SOLITONS & FRACTALS, 2004, 19 (01) :209-236
[10]  
Long R., 1995, MULTIDIMENSIONAL WAV