Lie symmetries and multiple solutions in lambda-omega reaction-diffusion systems

被引:9
作者
Archilla, JFR
Romero, JL
Romero, FR
Palmero, F
机构
[1] UNIV CADIZ,DEPT MATEMAT,PUERTO REAL,CADIZ,SPAIN
[2] UNIV SEVILLA,DEPT FAMN,SEVILLE,SPAIN
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1997年 / 30卷 / 01期
关键词
D O I
10.1088/0305-4470/30/1/013
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Lie theory of transformation groups is applied to the study of lambda-omega reaction-diffusion systems in two-dimensional media. Our study proves that they are invariant with respect to a five-parameter symmetry group. Multiple types of invariant solutions with physical interest are possible, and some of them can be found in the literature applied to particular models.
引用
收藏
页码:185 / 194
页数:10
相关论文
共 17 条
[1]  
CHOW P, 1978, J MATH ANAL APPL, V62, P151
[2]   ROTATING SPIRAL WAVE SOLUTIONS OF REACTION-DIFFUSION EQUATIONS [J].
COHEN, DS ;
NEU, JC ;
ROSALES, RR .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1978, 35 (03) :536-547
[3]  
Golubitsky M., 1985, SINGULARITIES GROUPS
[4]  
GREENBERG JM, 1981, ADV APPL MATH, V2, P450
[5]   SPIRAL WAVES IN REACTION-DIFFUSION EQUATIONS [J].
HAGAN, PS .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1982, 42 (04) :762-786
[6]  
KOPELL N, 1973, STUD APPL MATH, V52, P291
[7]   TURBULIZED ROTATING CHEMICAL WAVES [J].
KURAMOTO, Y ;
KOGA, S .
PROGRESS OF THEORETICAL PHYSICS, 1981, 66 (03) :1081-1085
[8]   TWO-DIMENSIONAL SPECTROPHOTOMETRY OF SPIRAL WAVE-PROPAGATION IN THE BELOUSOV-ZHABOTINSKII REACTION .1. EXPERIMENTS AND DIGITAL DATA REPRESENTATION [J].
MULLER, SC ;
PLESSER, T ;
HESS, B .
PHYSICA D, 1987, 24 (1-3) :71-86
[9]  
MURRAY J, 1977, LECTURES NONLINEAR D
[10]  
Ovsiannikov LV., 1982, Group analysis of differential equations