Hierarchical identification for multivariate Hammerstein systems by using the modified Kalman filter

被引:89
作者
Ma, Junxia [1 ,2 ]
Xiong, Weili [1 ]
Chen, Jing [1 ]
Ding, Feng [1 ,3 ]
机构
[1] Jiangnan Univ, Sch Internet Things Engn, Key Lab Adv Proc Control Light Ind, Minist Educ, Wuxi 214122, Peoples R China
[2] Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB T6G 2G6, Canada
[3] Hubei Univ Technol, Sch Elect & Elect Engn, Wuhan 430068, Peoples R China
基金
中国国家自然科学基金;
关键词
MIMO systems; Kalman filters; autoregressive processes; least squares approximations; delays; hierarchical identification; multivariate Hammerstein system; modified Kalman filter; parameter estimation; multiinput multioutput Hammerstein system; dynamic time-invariant subsystem; controlled autoregressive model; communication delay; MKF-based recursive least squares algorithm; MKF-based hierarchical LS algorithm; convergence analysis; LEAST-SQUARES ALGORITHM; PARAMETER-IDENTIFICATION; NONLINEAR-SYSTEMS; DYNAMICAL-SYSTEMS; NEWTON ITERATION; STATE ESTIMATION; AUXILIARY MODEL; ROBUST;
D O I
10.1049/iet-cta.2016.1033
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The parameter estimation problem for multi-input multi-output Hammerstein systems is considered. For the Hammerstein model to be identified, its dynamic time-invariant subsystem is described by a controlled autoregressive model with a communication delay. The modified Kalman filter (MKF) algorithm is derived to estimate the unknown intermediate variables in the system and the MKF-based recursive least squares (LS) algorithm is presented to estimate all the unknown parameters. Furthermore, the hierarchical identification is adopted to decompose the system into two fictitious subsystems: one containing the unknown parameters in the non-linear block and the other containing the unknown parameters in the linear subsystem. Then an MKF-based hierarchical LS algorithm is derived. The convergence analysis shows the performance of the presented algorithms. The numerical simulation results indicate that the proposed algorithms are effective.
引用
收藏
页码:857 / 869
页数:13
相关论文
共 49 条
  • [11] Robust maximum-likelihood estimation of multivariable dynamic systems
    Gibson, S
    Ninness, B
    [J]. AUTOMATICA, 2005, 41 (10) : 1667 - 1682
  • [12] Golub GH., 2012, MATRIX COMPUTATIONS, V3
  • [13] Goodwin G. C., 1984, Adaptive filtering prediction and control
  • [14] A Novel Approach for Vehicle Inertial Parameter Identification Using a Dual Kalman Filter
    Hong, Sanghyun
    Lee, Chankyu
    Borrelli, Francesco
    Hedrick, J. Karl
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2015, 16 (01) : 151 - 161
  • [15] Identification of multivariable nonlinear systems in the presence of colored noises using iterative hierarchical least squares algorithm
    Jafari, Masoumeh
    Salimifard, Maryam
    Dehghani, Maryam
    [J]. ISA TRANSACTIONS, 2014, 53 (04) : 1243 - 1252
  • [16] Robust adaptive attenuation of unknown periodic disturbances in uncertain multi-input multi-output systems
    Jafari, Saeid
    Ioannou, Petros A.
    [J]. AUTOMATICA, 2016, 70 : 32 - 42
  • [17] IDENTIFICATION OF HAMMERSTEIN MODELS USING MULTIVARIATE STATISTICAL TOOLS
    LAKSHMINARAYANAN, S
    SHAH, SI
    NANDAKUMAR, K
    [J]. CHEMICAL ENGINEERING SCIENCE, 1995, 50 (22) : 3599 - 3613
  • [18] Recursive identification of Hammerstein systems with application to electrically stimulated muscle
    Le, Fengmin
    Markovsky, Ivan
    Freeman, Christopher T.
    Rogers, Eric
    [J]. CONTROL ENGINEERING PRACTICE, 2012, 20 (04) : 386 - 396
  • [19] Convergence properties of the least squares estimation algorithm for multivariable systems
    Liu, Yanjun
    Ding, Feng
    [J]. APPLIED MATHEMATICAL MODELLING, 2013, 37 (1-2) : 476 - 483
  • [20] A novel parameter separation based identification algorithm for Hammerstein systems
    Mao, Yawen
    Ding, Feng
    [J]. APPLIED MATHEMATICS LETTERS, 2016, 60 : 21 - 27