Hierarchical identification for multivariate Hammerstein systems by using the modified Kalman filter

被引:89
作者
Ma, Junxia [1 ,2 ]
Xiong, Weili [1 ]
Chen, Jing [1 ]
Ding, Feng [1 ,3 ]
机构
[1] Jiangnan Univ, Sch Internet Things Engn, Key Lab Adv Proc Control Light Ind, Minist Educ, Wuxi 214122, Peoples R China
[2] Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB T6G 2G6, Canada
[3] Hubei Univ Technol, Sch Elect & Elect Engn, Wuhan 430068, Peoples R China
基金
中国国家自然科学基金;
关键词
MIMO systems; Kalman filters; autoregressive processes; least squares approximations; delays; hierarchical identification; multivariate Hammerstein system; modified Kalman filter; parameter estimation; multiinput multioutput Hammerstein system; dynamic time-invariant subsystem; controlled autoregressive model; communication delay; MKF-based recursive least squares algorithm; MKF-based hierarchical LS algorithm; convergence analysis; LEAST-SQUARES ALGORITHM; PARAMETER-IDENTIFICATION; NONLINEAR-SYSTEMS; DYNAMICAL-SYSTEMS; NEWTON ITERATION; STATE ESTIMATION; AUXILIARY MODEL; ROBUST;
D O I
10.1049/iet-cta.2016.1033
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The parameter estimation problem for multi-input multi-output Hammerstein systems is considered. For the Hammerstein model to be identified, its dynamic time-invariant subsystem is described by a controlled autoregressive model with a communication delay. The modified Kalman filter (MKF) algorithm is derived to estimate the unknown intermediate variables in the system and the MKF-based recursive least squares (LS) algorithm is presented to estimate all the unknown parameters. Furthermore, the hierarchical identification is adopted to decompose the system into two fictitious subsystems: one containing the unknown parameters in the non-linear block and the other containing the unknown parameters in the linear subsystem. Then an MKF-based hierarchical LS algorithm is derived. The convergence analysis shows the performance of the presented algorithms. The numerical simulation results indicate that the proposed algorithms are effective.
引用
收藏
页码:857 / 869
页数:13
相关论文
共 49 条
  • [1] [Anonymous], 1999, SYSTEM IDENTIFICATIO
  • [2] A dual Kalman filter approach for state estimation via output-only acceleration measurements
    Azam, Saeed Eftekhar
    Chatzi, Eleni
    Papadimitriou, Costas
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2015, 60-61 : 866 - 886
  • [3] Signal frequency and parameter estimation for power systems using the hierarchical identification principle
    Cao, Yinni
    Liu, Zhanqiang
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2010, 52 (5-6) : 854 - 861
  • [4] Ding F., 2014, SYSTEM IDENTIFICATIO
  • [5] Performance analysis of the generalised projection identification for time-varying systems
    Ding, Feng
    Xu, Ling
    Zhu, Quanmin
    [J]. IET CONTROL THEORY AND APPLICATIONS, 2016, 10 (18) : 2506 - 2514
  • [6] Hierarchical estimation algorithms for multivariable systems using measurement information
    Ding, Feng
    [J]. INFORMATION SCIENCES, 2014, 277 : 396 - 405
  • [7] Performance analysis of the auxiliary model-based least-squares identification algorithm for one-step state-delay systems
    Ding, Feng
    Gu, Ya
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2012, 89 (15) : 2019 - 2028
  • [8] The kernel recursive least-squares algorithm
    Engel, Y
    Mannor, S
    Meir, R
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2004, 52 (08) : 2275 - 2285
  • [9] USE OF HAMMERSTEIN MODELS IN IDENTIFICATION OF NONLINEAR-SYSTEMS
    ESKINAT, E
    JOHNSON, SH
    LUYBEN, WL
    [J]. AICHE JOURNAL, 1991, 37 (02) : 255 - 268
  • [10] Array Factor Forming for Image Reconstruction of One-Dimensional Nonuniform Aperture Synthesis Radiometers
    Feng, Li
    Wu, Minghu
    Li, Qingxia
    Chen, Ke
    Li, Yufang
    He, Zhangqing
    Tong, Jing
    Tu, Lingying
    Xie, Honggang
    Lu, Hailiang
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (02) : 237 - 241