Linear matrix period in max-plus algebra

被引:24
作者
Gavalec, M [1 ]
机构
[1] Tech Univ Kosice, Fac EE & Informat, Dept Math, Kosice 04200, Slovakia
关键词
linear matrix period; max-plus algebra; NP-completeness;
D O I
10.1016/S0024-3795(00)00020-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Linear periodicity of matrices in max-plus algebra is studied. It is proved that the linear period of a matrix can be computed in O(n(3)) time if the digraph of the matrix is strongly connected. The general problem of deciding whether a given matrix is almost linear periodic is shown to be NP-complete. (C) 2000 Published by Elsevier Science Inc. All rights reserved.
引用
收藏
页码:167 / 182
页数:16
相关论文
共 18 条
[1]  
BACCELI F, 1992, SYNCHRONIZATION LIEN
[2]  
BALCER Y, 1973, DISCRETE MATH, V38, P295
[3]   On the powers of matrices in bottleneck/fuzzy algebra [J].
Cechlarova, K .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1996, 246 :97-111
[4]   A LINEAR-SYSTEM-THEORETIC VIEW OF DISCRETE-EVENT PROCESSES AND ITS USE FOR PERFORMANCE EVALUATION IN MANUFACTURING [J].
COHEN, G ;
DUBOIS, D ;
QUADRAT, JP ;
VIOT, M .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1985, 30 (03) :210-220
[5]  
Cuninghame-Green RA., 1979, Minimax Algebra
[6]  
DRAZENSKA E, 1998, P C INF ALG PRES, P327
[7]  
Gavalec M., 1997, Tatra Mountains Mathematical Publications, V12, P81
[8]   Computing matrix period in max-min algebra [J].
Gavalec, M .
DISCRETE APPLIED MATHEMATICS, 1997, 75 (01) :63-70
[9]   Computing orbit period in max-min algebra [J].
Gavalec, M .
DISCRETE APPLIED MATHEMATICS, 2000, 100 (1-2) :49-65
[10]  
GAVALEC M, UNPUB CTR EUR J OPER