State Convergence of Passive Nonlinear Systems With an L2 Input

被引:25
作者
Jayawardhana, Bayu [1 ]
Weiss, George [2 ]
机构
[1] Univ Groningen, Fac Math & Nat Sci, Groningen, Netherlands
[2] Tel Aviv Univ, Dept Elect Engn Syst, IL-69978 Ramat Aviv, Israel
关键词
Disturbance rejection problem; internal model principle; invariant sets under a semiflow; passive system; STABILITY; PROPERTY;
D O I
10.1109/TAC.2009.2020661
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We show that the state of a strictly output passive system with an L(2) input converges to zero. The result is applied to the disturbance rejection problem (with reference signal zero), where the disturbance can be decomposed into a finite superposition of sine waves of arbitrary but known frequencies and an L(2) signal. Using an LTI controller, constructed based on the internal model principle, the state trajectories of the plant (and hence also the error signal) converge to zero.
引用
收藏
页码:1723 / 1727
页数:5
相关论文
共 15 条
[1]   A characterization of integral input-to-state stability [J].
Angeli, D ;
Sontag, ED ;
Wang, Y .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2000, 45 (06) :1082-1097
[2]  
[Anonymous], 2000, NONLINEAR SYSTEMS
[3]  
[Anonymous], L2 GAIN PASSIVITY TE
[4]  
Isidori A., 1995, NONLINEAR CONTROL SY, V3rd, DOI 10.1007/978-1-84628-615-5
[5]  
JAYAWARDHANA B, 2007, P 46 IEEE CDC NEW OR
[6]  
LaSalle J P., 1976, Society for industrial and applied mathematics
[7]   Asymptotic behaviour of nonlinear systems [J].
Logemann, H ;
Ryan, EP .
AMERICAN MATHEMATICAL MONTHLY, 2004, 111 (10) :864-889
[8]  
Nicklasson PJ., 1998, PASSIVITY BASED CONT
[9]   Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems [J].
Ortega, R ;
van der Schaft, A ;
Maschke, B ;
Escobar, G .
AUTOMATICA, 2002, 38 (04) :585-596
[10]  
ORTEGA R, 2002, P 2 IFAC WORKSH LAGR, P51