Approximation for the exponential integral (Theis well function)

被引:46
作者
Barry, DA [1 ]
Parlange, JY
Li, L
机构
[1] Univ Edinburgh, Sch Civil & Environm Engn, Edinburgh EH9 3JN, Midlothian, Scotland
[2] Univ Edinburgh, Contaminated Land Assessment & Remediat Res Ctr, Edinburgh EH9 3JN, Midlothian, Scotland
[3] Cornell Univ, Dept Agr & Biol Engn, Ithaca, NY 14853 USA
关键词
groundwater; precision; accuracy; computer programs; efficiency; algorithms;
D O I
10.1016/S0022-1694(99)00184-5
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In this note, we provide an analytical approximation to the exponential integral valid for all values of its argument. The approximation is constructed by interpolation between the exponential integral's small and large asymptotes. The interpolation contains an unknown function, which is determined using the minimax criterion. The maximum error in the approximation is less than 0.07%, making it useful for routine hydrological applications. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:287 / 291
页数:5
相关论文
共 14 条
[1]  
[Anonymous], TABLES INTEGRALS SER
[2]  
[Anonymous], MAPLE 5 LIB REFERENC
[3]  
BARCILON V, 1990, HDB APPL MATH, V2
[4]  
BARRY DA, 1995, ACM T MATH SOFTWARE, V21, P172, DOI 10.1145/203082.203088
[5]   Approximations for the Hantush M function [J].
Barry, DA ;
Parlange, JY ;
Crapper, M .
JOURNAL OF HYDROLOGY, 1999, 221 (1-2) :91-96
[6]  
BEYER WH, 1978, CRC HDB MATH SCI, V5
[7]  
GAUTSCHI W, 1964, NBS APPL MATH SER, V55
[8]  
Morel-Seytoux H. J., 1975, GROUND WATER, V13, P506, DOI DOI 10.1111/J.1745-6584.1975.TB03620.X
[9]  
Roscoe Moss Company, 1990, HDB GROUND WAT DEV
[10]  
Spanier J., 1987, ATLAS FUNCTIONS