On a torsion-free weakly branch group defined by a three state automaton

被引:97
作者
Grigorchuk, RI
Zuk, A
机构
[1] VA Steklov Math Inst, Moscow 117966, Russia
[2] Ecole Normale Super Lyon, CNRS, Unite Math Pures & Appl, F-69364 Lyon 07, France
关键词
D O I
10.1142/S0218196702001000
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a torsion free weakly branch group G without free subgroups defined by a three state automaton which appears in different problems related to amenability, Galois groups and monodromy. Here and in the forthcoming paper [201 we establish several important properties of G related to fractalness, branchness, just infinitness, growth, amenability and presentations.
引用
收藏
页码:223 / 246
页数:24
相关论文
共 22 条
[1]  
[Anonymous], 1984, IZV AKAD NAUK SSSR
[2]   Spectra of non-commutative dynamical systems and graphs related to fractal groups [J].
Bartholdi, L ;
Grigorchuk, RI .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 331 (06) :429-434
[3]   Parabolic subgroups and representations of branch groups [J].
Bartholdi, L ;
Grigorchuk, RI .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 332 (09) :789-794
[4]   A just-nonsolvable torsion-free group defined on the binary tree [J].
Brunner, AM ;
Sidki, S ;
Vieira, AC .
JOURNAL OF ALGEBRA, 1999, 211 (01) :99-114
[5]  
Cannon J.W., 1996, ENSEIGN MATH, V42, P215, DOI DOI 10.5169/SEALS-87877
[6]   ELEMENTARY AMENABLE-GROUPS [J].
CHOU, C .
ILLINOIS JOURNAL OF MATHEMATICS, 1980, 24 (03) :396-407
[7]  
Day M. M., 1957, Illinois J. Math., V1, P509
[9]  
Grigorchuk R., 1997, J DYN CONTROL SYST, V3, P51
[10]  
Grigorchuk R.I, 1998, MAT SBORNIK, V189, P79, DOI [DOI 10.1070/SM1998V189N01ABEH000293, 10.4213/sm293]