IsoTree: De Novo Transcriptome Assembly from RNA-Seq Reads

被引:2
|
作者
Zhao, Jin [1 ]
Feng, Haodi [1 ]
Zhu, Daming [1 ]
Zhang, Chi [2 ]
Xu, Ying [3 ]
机构
[1] Shandong Univ, Sch Comp Sci & Technol, Shun Hua Rd, Jinan 250101, Shandong, Peoples R China
[2] Indiana Univ, Dept Med & Mol Genet, Bloomington, IN 47405 USA
[3] Univ Georgia, Dept Biochem & Mol Biol, Athens, GA 30602 USA
来源
BIOINFORMATICS RESEARCH AND APPLICATIONS (ISBRA 2017) | 2017年 / 10330卷
基金
中国国家自然科学基金;
关键词
ABUNDANCE ESTIMATION; ISOFORM DISCOVERY; EXPRESSION LEVELS; SPLICE JUNCTIONS; RECONSTRUCTION; REVEALS;
D O I
10.1007/978-3-319-59575-7_7
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
High-throughput sequencing of mRNA has made the deep and efficient probing of transcriptomes more affordable. However, the vast amounts of short RNA-seq reads make de novo transcriptome assembly an algorithmic challenge. In this work, we present IsoTree, a novel framework for transcripts reconstruction in the absence of reference genomes. Unlike most of de novo assembly methods that build de Bruijn graph or splicing graph by connecting k-mers which are sets of overlapping substrings generated from reads, IsoTree constructs splicing graph by connecting reads directly. For each splicing graph, IsoTree applies an iterative scheme of mixed integer linear program to build a prefix tree, called isoform tree. Each path from the root node of the isoform tree to a leaf node represents a plausible transcript candidate which will be pruned based on the information of pair-end reads. Experiments showed that IsoTree performs better in recall on both pair-end reads and singleend reads and in precision on pair-end reads compared to other leading transcript assembly programs including Cufflinks, StringTie and Bin-Packer.
引用
收藏
页码:71 / 83
页数:13
相关论文
共 50 条
  • [41] Estimation of alternative splicing isoform frequencies from RNA-Seq data
    Nicolae, Marius
    Mangul, Serghei
    Mandoiu, Ion I.
    Zelikovsky, Alex
    ALGORITHMS FOR MOLECULAR BIOLOGY, 2011, 6
  • [42] Transcriptome profiling of prostate tumor and matched normal samples by RNA-Seq
    Zhai, W.
    Yao, X. -D.
    Xu, Y. -F.
    Peng, B.
    Zhang, H. -M.
    Liu, M.
    Huang, J. -H.
    Wang, G. -C.
    Zheng, J. -H.
    EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES, 2014, 18 (09) : 1354 - 1360
  • [43] Parallelization of the Trinity pipeline for de novo transcriptome assembly
    Sachdeva, V.
    Kim, C. S.
    Jordan, K. E.
    Winn, M. D.
    PROCEEDINGS OF 2014 IEEE INTERNATIONAL PARALLEL & DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS (IPDPSW), 2014, : 567 - 576
  • [44] De novo assembly and analysis of crow lungs transcriptome
    Vijayakumar, Periyasamy
    Raut, Ashwin Ashok
    Kumar, Pushpendra
    Sharma, Deepak
    Mishra, Anamika
    GENOME, 2014, 57 (09) : 499 - 506
  • [45] Transcriptome profiling of the Pacific oyster Crassostrea gigas by Illumina RNA-seq
    Lim, Hyun-Jeong
    Lim, Jong-Sung
    Lee, Jeong-Soo
    Choi, Beom-Soon
    Kim, Dong-Inn
    Kim, Haeng-Woon
    Rhee, Jae-Sung
    Choi, Ik-Young
    GENES & GENOMICS, 2016, 38 (04) : 359 - 365
  • [46] De Novo Transcriptome Assembly of the Chinese Swamp Buffalo by RNA Sequencing and SSR Marker Discovery
    Deng, Tingxian
    Pang, Chunying
    Lu, Xingrong
    Zhu, Peng
    Duan, Anqin
    Tan, Zhengzhun
    Huang, Jian
    Li, Hui
    Chen, Mingtan
    Liang, Xianwei
    PLOS ONE, 2016, 11 (01):
  • [47] Transcriptome Sequencing (RNA-seq) Analysis of the Effects of Metal Nanoparticle Exposure on the Transcriptome of Chlamydomonas reinhardtii
    Simon, Dana F.
    Domingos, Rute F.
    Hauser, Charles
    Hutchins, Colin M.
    Zerges, William
    Wilkinson, Kevin J.
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2013, 79 (16) : 4774 - 4785
  • [48] Accurate assembly of multi-end RNA-seq data with Scallop2
    Zhang, Qimin
    Shi, Qian
    Shao, Mingfu
    NATURE COMPUTATIONAL SCIENCE, 2022, 2 (03): : 148 - +
  • [49] TransPi-a comprehensive TRanscriptome ANalysiS PIpeline for de novo transcriptome assembly
    Rivera-Vicens, Ramon E.
    Garcia-Escudero, Catalina A.
    Conci, Nicola
    Eitel, Michael
    Woerheide, Gert
    MOLECULAR ECOLOGY RESOURCES, 2022, 22 (05) : 2070 - 2086
  • [50] Advantages of RNA-seq compared to RNA microarrays for transcriptome profiling of anterior cruciate ligament tears
    Rai, Muhammad Farooq
    Tycksen, Eric D.
    Sandell, Linda J.
    Brophy, Robert H.
    JOURNAL OF ORTHOPAEDIC RESEARCH, 2018, 36 (01) : 484 - 497