IsoTree: De Novo Transcriptome Assembly from RNA-Seq Reads

被引:2
|
作者
Zhao, Jin [1 ]
Feng, Haodi [1 ]
Zhu, Daming [1 ]
Zhang, Chi [2 ]
Xu, Ying [3 ]
机构
[1] Shandong Univ, Sch Comp Sci & Technol, Shun Hua Rd, Jinan 250101, Shandong, Peoples R China
[2] Indiana Univ, Dept Med & Mol Genet, Bloomington, IN 47405 USA
[3] Univ Georgia, Dept Biochem & Mol Biol, Athens, GA 30602 USA
来源
BIOINFORMATICS RESEARCH AND APPLICATIONS (ISBRA 2017) | 2017年 / 10330卷
基金
中国国家自然科学基金;
关键词
ABUNDANCE ESTIMATION; ISOFORM DISCOVERY; EXPRESSION LEVELS; SPLICE JUNCTIONS; RECONSTRUCTION; REVEALS;
D O I
10.1007/978-3-319-59575-7_7
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
High-throughput sequencing of mRNA has made the deep and efficient probing of transcriptomes more affordable. However, the vast amounts of short RNA-seq reads make de novo transcriptome assembly an algorithmic challenge. In this work, we present IsoTree, a novel framework for transcripts reconstruction in the absence of reference genomes. Unlike most of de novo assembly methods that build de Bruijn graph or splicing graph by connecting k-mers which are sets of overlapping substrings generated from reads, IsoTree constructs splicing graph by connecting reads directly. For each splicing graph, IsoTree applies an iterative scheme of mixed integer linear program to build a prefix tree, called isoform tree. Each path from the root node of the isoform tree to a leaf node represents a plausible transcript candidate which will be pruned based on the information of pair-end reads. Experiments showed that IsoTree performs better in recall on both pair-end reads and singleend reads and in precision on pair-end reads compared to other leading transcript assembly programs including Cufflinks, StringTie and Bin-Packer.
引用
收藏
页码:71 / 83
页数:13
相关论文
共 50 条
  • [31] GeneScissors: a comprehensive approach to detecting and correcting spurious transcriptome inference owing to RNA-seq reads misalignment
    Zhang, Zhaojun
    Huang, Shunping
    Wang, Jack
    Zhang, Xiang
    de Villena, Fernando Pardo Manuel
    McMillan, Leonard
    Wang, Wei
    BIOINFORMATICS, 2013, 29 (13) : 291 - 299
  • [32] Computational methods for transcriptome annotation and quantification using RNA-seq
    Garber, Manuel
    Grabherr, Manfred G.
    Guttman, Mitchell
    Trapnell, Cole
    NATURE METHODS, 2011, 8 (06) : 469 - 477
  • [33] RNASequel: accurate and repeat tolerant realignment of RNA-seq reads
    Wilson, Gavin W.
    Stein, Lincoln D.
    NUCLEIC ACIDS RESEARCH, 2015, 43 (18)
  • [34] Another lesson from unmapped reads: in-depth analysis of RNA-Seq reads from various horse tissues
    Gurgul, Artur
    Szmatola, Tomasz
    Oclon, Ewa
    Jasielczuk, Igor
    Semik-Gurgul, Ewelina
    Finno, Carrie J.
    Petersen, Jessica L.
    Bellone, Rebecca
    Hales, Erin N.
    Zabek, Tomasz
    Arent, Zbigniew
    Kotula-Balak, Malgorzata
    Bugno-Poniewierska, Monika
    JOURNAL OF APPLIED GENETICS, 2022, 63 (03) : 571 - 581
  • [35] De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis
    Haas, Brian J.
    Papanicolaou, Alexie
    Yassour, Moran
    Grabherr, Manfred
    Blood, Philip D.
    Bowden, Joshua
    Couger, Matthew Brian
    Eccles, David
    Li, Bo
    Lieber, Matthias
    MacManes, Matthew D.
    Ott, Michael
    Orvis, Joshua
    Pochet, Nathalie
    Strozzi, Francesco
    Weeks, Nathan
    Westerman, Rick
    William, Thomas
    Dewey, Colin N.
    Henschel, Robert
    Leduc, Richard D.
    Friedman, Nir
    Regev, Aviv
    NATURE PROTOCOLS, 2013, 8 (08) : 1494 - 1512
  • [36] AGTAR: A novel approach for transcriptome assembly and abundance estimation using an adapted genetic algorithm from RNA-seq data
    Li, Mingyue
    Bai, Miao
    Wu, Yulun
    Shao, Wenjun
    Zheng, Lihua
    Sun, Luguo
    Wang, Shuyue
    Yu, Chunlei
    Huang, Yanxin
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 135
  • [37] Comparative analysis of de novo transcriptome assembly
    Clarke, Kaitlin
    Yang Yi
    Marsh, Ronald
    Xie LingLin
    Zhang, Ke K.
    SCIENCE CHINA-LIFE SCIENCES, 2013, 56 (02) : 156 - 162
  • [38] New insights into the Plasmodium vivax transcriptome using RNA-Seq
    Zhu, Lei
    Mok, Sachel
    Imwong, Mallika
    Jaidee, Anchalee
    Russell, Bruce
    Nosten, Francois
    Day, Nicholas P.
    White, Nicholas J.
    Preiser, Peter R.
    Bozdech, Zbynek
    SCIENTIFIC REPORTS, 2016, 6
  • [39] Analysis Considerations for Utilizing RNA-Seq to Characterize the Brain Transcriptome
    Zheng, Christina L.
    Kawane, Sunita
    Bottomly, Daniel
    Wilmot, Beth
    BRAIN TRANSCRIPTOME, 2014, 116 : 21 - 54
  • [40] Analysis of intronic and exonic reads in RNA-seq data characterizes transcriptional and post-transcriptional regulation
    Gaidatzis, Dimos
    Burger, Lukas
    Florescu, Maria
    Stadler, Michael B.
    NATURE BIOTECHNOLOGY, 2015, 33 (07) : 722 - 729