MOCVD-Grown GaP/Si Subcells for Integrated III-V/Si Multijunction Photovoltaics

被引:36
作者
Grassman, T. J. [1 ]
Carlin, J. A. [1 ]
Galiana, B. [1 ]
Yang, F. [1 ]
Mills, M. J. [1 ]
Ringel, S. A. [1 ]
机构
[1] Ohio State Univ, Columbus, OH 43210 USA
来源
IEEE JOURNAL OF PHOTOVOLTAICS | 2014年 / 4卷 / 03期
关键词
III-V semiconductor materials; photovoltaic (PV) cells; semiconductor epitaxial layers; silicon; Si PV device fabrication; SOLAR-CELLS; SILICON; SI; PHOSPHORUS; EFFICIENCY; DIFFUSION; GAASP;
D O I
10.1109/JPHOTOV.2014.2308727
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Enabled by a heteroepitaxial nucleation process that yields GaP-on-Si integration free of heterovalent-related defects, GaP/active-Si junctions were grown by metalorganic chemical vapor deposition. n-type Si emitter layers were grown on p-type (1 0 0)-oriented Si substrates, followed by the growth of n-type GaP window layers, to form fully active subcell structures compatible with integration into monolithic III-V/Si multijunction solar cells. Fabricated test devices yield good preliminary performance characteristics and demonstrate great promise for the epitaxial subcell approach. Comparison of different emitter layer thicknesses, combined with descriptive device modeling, reveals insight into recombination dynamics at the GaP/Si interface and provides design guidance for future device optimization. Additional test structures consisting of GaP/active-Si subcell substrates with subsequently grown GaAsyP1-y step-graded buffers and GaAs0.75P0.25 terminal layers were produced to simulate the optical response of the GaP/Si junction within a theoretically ideal dual-junction solar cell.
引用
收藏
页码:972 / 980
页数:9
相关论文
共 39 条
  • [1] Al Mansouri I, 2013, IEEE PHOT SPEC CONF, P3310, DOI 10.1109/PVSC.2013.6745159
  • [2] DIELECTRIC FUNCTIONS AND OPTICAL-PARAMETERS OF SI, GE, GAP, GAAS, GASB, INP, INAS, AND INSB FROM 1.5 TO 6.0 EV
    ASPNES, DE
    STUDNA, AA
    [J]. PHYSICAL REVIEW B, 1983, 27 (02) : 985 - 1009
  • [3] GaP heteroepitaxy on Si(001): Correlation of Si-surface structure, GaP growth conditions, and Si-III/V interface structure
    Beyer, A.
    Ohlmann, J.
    Liebich, S.
    Heim, H.
    Witte, G.
    Stolz, W.
    Volz, K.
    [J]. JOURNAL OF APPLIED PHYSICS, 2012, 111 (08)
  • [4] 22.8-PERCENT EFFICIENT SILICON SOLAR-CELL
    BLAKERS, AW
    WANG, A
    MILNE, AM
    ZHAO, JH
    GREEN, MA
    [J]. APPLIED PHYSICS LETTERS, 1989, 55 (13) : 1363 - 1365
  • [5] LIGHT TRAPPING PROPERTIES OF PYRAMIDALLY TEXTURED SURFACES
    CAMPBELL, P
    GREEN, MA
    [J]. JOURNAL OF APPLIED PHYSICS, 1987, 62 (01) : 243 - 249
  • [6] Phosphorus and boron diffusion in silicon under equilibrium conditions
    Christensen, JS
    Radamson, HH
    Kuznetsov, AY
    Svensson, BG
    [J]. APPLIED PHYSICS LETTERS, 2003, 82 (14) : 2254 - 2256
  • [7] PC1D version 5: 32-bit solar cell modeling on personal computers
    Clugston, DA
    Basore, PA
    [J]. CONFERENCE RECORD OF THE TWENTY SIXTH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE - 1997, 1997, : 207 - 210
  • [8] Comparison of Direct Growth and Wafer Bonding for the Fabrication of GaInP/GaAs Dual-Junction Solar Cells on Silicon
    Dimroth, Frank
    Roesener, Tobias
    Essig, Stephanie
    Weuffen, Christoph
    Wekkeli, Alexander
    Oliva, Eduard
    Siefer, Gerald
    Volz, Kerstin
    Hannappel, Thomas
    Haeussler, Dietrich
    Jaeger, Wolfgang
    Bett, Andreas W.
    [J]. IEEE JOURNAL OF PHOTOVOLTAICS, 2014, 4 (02): : 620 - 625
  • [9] Friedman D.J., 2010, HDB PHOTOVOLTAIC SCI, P314, DOI [10.1002/9780470974704.ch8, DOI 10.1002/9780470974704.CH8]
  • [10] Understanding phosphorus diffusion into silicon in a MOVPE environment for III-V on silicon solar cells
    Garcia-Tabares, Elisa
    Martin, Diego
    Garcia, Ivan
    Rey-Stolle, Ignacio
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2013, 116 : 61 - 67