Galois Representations Over Fields of Moduli and Rational Points on Shimura Curves

被引:6
|
作者
Rotger, Victor [1 ]
de Vera-Piquero, Carlos [1 ]
机构
[1] Univ Politecn Cataluna, Dept Matemat Aplicada 2, ES-08034 Barcelona, Spain
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2014年 / 66卷 / 05期
关键词
Shimura curves; rational points; Galois representations; Hasse principle; Brauer-Manin obstruction; ATKIN-LEHNER QUOTIENTS; ABELIAN VARIETIES; ALGEBRAS;
D O I
10.4153/CJM-2013-020-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this note is to introduce a method for proving the non-existence of rational points on a coarse moduli space X of abelian varieties over a given number field K in cases where the moduli problem is not fine and points in X(K) may not be represented by an abelian variety (with additional structure) admitting a model over the field K. This is typically the case when the abelian varieties that are being classified have even dimension. The main idea, inspired by the work of Ellenberg and Skinner on the modularity of Q-curves, is that one may still attach a Galois representation of Gal((K) over bar /K) with values in the quotient group GL(T-l(A))/Aut(A) to a point P = [A] is an element of X(K) represented by an abelian variety A/(K) over bar, provided Aut(A) lies in the centre of GL(T-l(A)). We exemplify our method in the cases where X is a Shimura curve over an imaginary quadratic field or an Atkin-Lehner quotient over Q.
引用
收藏
页码:1167 / 1200
页数:34
相关论文
共 50 条
  • [1] Non-existence of points rational over number fields on Shimura curves
    Arai, Keisuke
    ACTA ARITHMETICA, 2016, 172 (03) : 243 - 250
  • [2] Points on Shimura curves rational over imaginary quadratic fields in the non-split case
    Arai K.
    Mathematische Zeitschrift, 2023, 305 (4)
  • [3] On multiplicities of Galois representations in cohomology groups of Shimura curves
    Cheng, Chuangxun
    Fu, Ji
    MATHEMATICAL RESEARCH LETTERS, 2018, 25 (03) : 759 - 782
  • [4] Bounds for the number of rational points on curves over function fields
    Pacheco, Amilcar
    Pazuki, Fabien
    NEW YORK JOURNAL OF MATHEMATICS, 2013, 19 : 131 - 144
  • [5] Rational points on Atkin-Lehner quotients of geometrically hyperelliptic Shimura curves
    Padurariu, Oana
    Schembri, Ciaran
    EXPOSITIONES MATHEMATICAE, 2023, 41 (03) : 492 - 513
  • [6] TORSION POINTS AND GALOIS REPRESENTATIONS ON CM ELLIPTIC CURVES
    Bourdon, Abbey
    Clark, Pete L.
    PACIFIC JOURNAL OF MATHEMATICS, 2020, 305 (01) : 43 - 88
  • [7] Unboundedness of the number of rational points on curves over function fields
    Conceicao, Ricardo
    Ulmer, Douglas
    Voloch, Jose Felipe
    NEW YORK JOURNAL OF MATHEMATICS, 2012, 18 : 291 - 293
  • [8] Rational points on symmetric squares of constant algebraic curves over function fields
    Berg, Jennifer
    Voloch, Jose Felipe
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2023, 35 (02): : 467 - 480
  • [9] A note on algebraic points on Shimura curves
    Arai, Keisuke
    NUMBER THEORY RELATED TO MODULAR CURVES: MOMOSE MEMORIAL VOLUME, 2018, 701 : 9 - 15
  • [10] ON THE MAXIMUM NUMBER OF RATIONAL POINTS ON SINGULAR CURVES OVER FINITE FIELDS
    Aubry, Yves
    Iezzi, Annamaria
    MOSCOW MATHEMATICAL JOURNAL, 2015, 15 (04) : 615 - 627