The topological gradient in anisotropic elasticity with an eye towards lightweight design

被引:6
作者
Schneider, Matti [1 ]
Andrae, Heiko [2 ]
机构
[1] Tech Univ Chemnitz, Dept Lightweight Struct & Polymer Technol, Fac Mech Engn, D-09107 Chemnitz, Germany
[2] Fraunhofer Inst Ind Math ITWM, D-67663 Kaiserslautern, Germany
关键词
topological gradient; topology optimization; asymptotic analysis; elastic moment tensor; Eshelby's tensor; anisotropic elasticity; lightweight design; ELLIPSOIDAL INCLUSION; SHAPE OPTIMIZATION; FIELD; TENSORS;
D O I
10.1002/mma.2918
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive a representation formula for the topological gradient with respect to arbitrary quadratic yield functionals and anisotropic elastic materials, thus laying the theoretical foundations for topological sensitivity analysis in lightweight design. For compliance, minimization involving general anisotropic materials and ellipsoidal perturbations, we give a closed formula for the topological gradient, enabling topology optimization of integrated designs involving several reinforced materials. If the materials are transversely isotropic and the perturbations are spheriodal, we even obtain an analytical formula. For general anisotropy, recent advances in the computation of Eshelby's tensor enable rapid numerical computation of the topological gradient.Restricting to isotropic materials and spheroidal inclusions, we obtain an analytical formula for minimizing isotropic yield functionals with applications to microscale-scale sensitivity analysis of fiber reinforced composites or reinforcing analysis of brittle materials. Copyright (c) 2013 John Wiley & Sons, Ltd.
引用
收藏
页码:1624 / 1641
页数:18
相关论文
共 55 条
  • [1] ALLAIRE G, 1993, EUR J MECH A-SOLID, V12, P839
  • [2] Allaire G, 2005, CONTROL CYBERN, V34, P59
  • [3] Shape optimization by the homogenization method
    Allaire, G
    Bonnetier, E
    Francfort, G
    Jouve, F
    [J]. NUMERISCHE MATHEMATIK, 1997, 76 (01) : 27 - 68
  • [4] Damage and fracture evolution in brittle materials by shape optimization methods
    Allaire, Gregoire
    Jouve, Francois
    Van Goethem, Nicolas
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (12) : 5010 - 5044
  • [5] Complete asymptotic expansions of solutions of the system of elastostatics in the presence of an inclusion of small diameter and detection of an inclusion
    Ammari, H
    Kang, H
    Nakamura, G
    Tanuma, K
    [J]. JOURNAL OF ELASTICITY, 2002, 67 (02) : 97 - 129
  • [6] Ammari H, 12106760 ARXIV
  • [7] Ammari H, 2004, RECONSTRUCTION SMALL, DOI [DOI 10.1007/B98245, 10.1007/b98245]
  • [8] Ammari H, 2007, POLARIZATION MOMENT, V162, DOI [10.1007/978-0-387-71566-7, DOI 10.1007/978-0-387-71566-7]
  • [9] Ammari H, 2008, Q APPL MATH, V66, P139
  • [10] Ammari H, 2007, J COMPUT MATH, V25, P2