Carbon Nanotube Terahertz Detector

被引:229
作者
He, Xiaowei [1 ,2 ]
Fujimura, Naoki [7 ]
Lloyd, J. Meagan [3 ,8 ]
Erickson, Kristopher J. [9 ]
Talin, A. Alec [9 ]
Zhang, Qi [1 ,2 ]
Gao, Weilu [1 ,2 ]
Jiang, Qijia [1 ,2 ]
Kawano, Yukio [7 ]
Hauge, Robert H. [2 ,4 ,10 ]
Leonard, Francois [9 ]
Kono, Junichiro [1 ,2 ,5 ,6 ]
机构
[1] Rice Univ, Dept Elect & Comp Engn, Houston, TX 77005 USA
[2] Rice Univ, Richard E Smalley Inst Nanoscale Sci & Technol, Houston, TX 77005 USA
[3] Rice Univ, NanoJapan Program, Houston, TX 77005 USA
[4] Rice Univ, Dept Chem, Houston, TX 77005 USA
[5] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA
[6] Rice Univ, Dept Mat Sci & NanoEngn, Houston, TX 77005 USA
[7] Tokyo Inst Technol, Dept Phys Elect, Quantum Nanoelect Res Ctr, Meguro Ku, Tokyo 1528552, Japan
[8] Carnegie Mellon Univ, Dept Elect & Comp Engn, Pittsburgh, PA 15213 USA
[9] Sandia Natl Labs, Livermore, CA 94551 USA
[10] King Abdulaziz Univ, Dept Chem, Fac Sci, Jeddah 21589, Saudi Arabia
基金
美国国家科学基金会;
关键词
Carbon nanotubes; THz photodetector; broadband; polarization sensitive; BROAD-BAND; GRAPHENE; OPTOELECTRONICS; PHOTODETECTOR; CONDUCTIVITY; TECHNOLOGY; PHOTONICS; FILMS;
D O I
10.1021/nl5012678
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Terahertz (THz) technologies are promising for diverse areas such as medicine, bioengineering, astronomy, environmental monitoring, and communications. However, despite decades of worldwide efforts, the THz region of the electromagnetic spectrum still continues to be elusive for solid state technology. Here, we report on the development of a powerless, compact, broadband, flexible, large-area, and polarization-sensitive carbon nanotube THz detector that works at room temperature. The detector is sensitive throughout the entire range of the THz technology gap, with responsivities as high as similar to 2.5 V/W and polarization ratios as high as similar to 5:1. Complete thermoelectric and opto-thermal characterization together unambiguously reveal the photothermoelectric origin of the THz photosignal, triggered by plasmonic absorption and collective antenna effects, and suggest that judicious design of thermal management and quantum engineering of Seebeck coefficients will lead to further enhancement of device performance.
引用
收藏
页码:3953 / 3958
页数:6
相关论文
共 42 条
[1]   Dynamical conductivity and zero-mode anomaly in honeycomb lattices [J].
Ando, T ;
Zheng, YS ;
Suzuura, H .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2002, 71 (05) :1318-1324
[2]   Carbon-nanotube photonics and optoelectronics [J].
Avouris, Phaedon ;
Freitag, Marcus ;
Perebeinos, Vasili .
NATURE PHOTONICS, 2008, 2 (06) :341-350
[3]   Carbon-based electronics [J].
Avouris, Phaedon ;
Chen, Zhihong ;
Perebeinos, Vasili .
NATURE NANOTECHNOLOGY, 2007, 2 (10) :605-615
[4]   Photocurrent imaging of charge transport barriers in carbon nanotube devices [J].
Balasubramanian, K ;
Burghard, M ;
Kern, K ;
Scolari, M ;
Mews, A .
NANO LETTERS, 2005, 5 (03) :507-510
[5]  
Barkelid M, 2014, NAT PHOTONICS, V8, P48, DOI [10.1038/NPHOTON.2013.311, 10.1038/nphoton.2013.311]
[6]   Terahertz processes in carbon nanotubes [J].
Batrakov, Konstantin G. ;
Kibis, Oleg V. ;
Kuzhir, Polina P. ;
da Costa, Marcelo Rosenau ;
Portnoi, Mikhail E. .
JOURNAL OF NANOPHOTONICS, 2010, 4
[7]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/nphoton.2010.186, 10.1038/NPHOTON.2010.186]
[8]   Polarization dependence of coherent phonon generation and detection in highly-aligned single-walled carbon nanotubes [J].
Booshehri, L. G. ;
Pint, C. L. ;
Sanders, G. D. ;
Ren, L. ;
Sun, C. ;
Haroz, E. H. ;
Kim, J. -H. ;
Yee, K. -J. ;
Lim, Y. -S. ;
Hauge, R. H. ;
Stanton, C. J. ;
Kono, J. .
PHYSICAL REVIEW B, 2011, 83 (19)
[9]   Terahertz detection mechanism and contact capacitance of individual metallic single-walled carbon nanotubes [J].
Chudow, Joel D. ;
Santavicca, Daniel F. ;
McKitterick, Chris B. ;
Prober, Daniel E. ;
Kim, Philip .
APPLIED PHYSICS LETTERS, 2012, 100 (16)
[10]  
Dresselhaus M.S., 2001, TOPICS IN APPLIED PH, V18