Random analytic function;
zeros;
determinantal process;
random matrix;
Haar unitary;
hyperbolic plane;
invariant point process;
EIGENVALUES;
ZEROS;
D O I:
10.1214/08-AOP404
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
We consider two families of random matrix-valued analytic functions: (1) G(1) - zG(2) and (2) G(0) + zG(1) + Z(2)G(2) + . . . , where G(i) are n x n random matrices with independent standard complex Gaussian entries. The random set of z where these matrix-analytic functions become singular is shown to be determinantal point processes in the sphere and the hyperbolic plane, respectively. The kernels of these determinantal processes are reproducing kernels of certain Hilbert spaces ("Bargmann-Fock spaces") of holomorphic functions on the corresponding Surfaces. Along with the new results, this also gives a unified framework in which to view a theorem of Peres and Virag (n = 1 in the second setting above) and a well-known result of Ginibre on Gaussian random matrices (which may be viewed as an analogue of our results in the whole plane).
机构:
Univ Minnesota, Sch Stat, 224 Church St SE, Minneapolis, MN 55455 USAUniv Minnesota, Sch Stat, 224 Church St SE, Minneapolis, MN 55455 USA
Jiang, Tiefeng
Ma, Yutao
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
Beijing Normal Univ, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R ChinaUniv Minnesota, Sch Stat, 224 Church St SE, Minneapolis, MN 55455 USA
机构:
Univ Paris Est Marne la Vallee, Inst Gaspard Mange LabInfo, UMR 8049, F-77454 Champs Sur Marne, Marne La Vallee, FranceTelecom Paristech, CNRS, F-75013 Paris, France
机构:
Univ Paris Est Marne la Vallee, Inst Gaspard Mange LabInfo, UMR 8049, F-77454 Champs Sur Marne, Marne La Vallee, FranceTelecom Paristech, CNRS, F-75013 Paris, France
Vallet, Pascal
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES,
2013,
49
(01):
: 36
-
63