Random analytic function;
zeros;
determinantal process;
random matrix;
Haar unitary;
hyperbolic plane;
invariant point process;
EIGENVALUES;
ZEROS;
D O I:
10.1214/08-AOP404
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
We consider two families of random matrix-valued analytic functions: (1) G(1) - zG(2) and (2) G(0) + zG(1) + Z(2)G(2) + . . . , where G(i) are n x n random matrices with independent standard complex Gaussian entries. The random set of z where these matrix-analytic functions become singular is shown to be determinantal point processes in the sphere and the hyperbolic plane, respectively. The kernels of these determinantal processes are reproducing kernels of certain Hilbert spaces ("Bargmann-Fock spaces") of holomorphic functions on the corresponding Surfaces. Along with the new results, this also gives a unified framework in which to view a theorem of Peres and Virag (n = 1 in the second setting above) and a well-known result of Ginibre on Gaussian random matrices (which may be viewed as an analogue of our results in the whole plane).
机构:
Ecole Polytech, CMAP, UMR 7641, F-91120 Palaiseau, FranceEcole Polytech, CMAP, UMR 7641, F-91120 Palaiseau, France
Bertucci, Charles
Debbah, Merouane
论文数: 0引用数: 0
h-index: 0
机构:
Lagrange Math & Comp Res Ctr, F-75007 Paris, FranceEcole Polytech, CMAP, UMR 7641, F-91120 Palaiseau, France
Debbah, Merouane
Lasry, Jean-Michel
论文数: 0引用数: 0
h-index: 0
机构:
PSL Res Univ, Univ Paris Dauphine, UMR 7534, CEREMADE, F-75016 Paris, FranceEcole Polytech, CMAP, UMR 7641, F-91120 Palaiseau, France
Lasry, Jean-Michel
Lions, Pierre-Louis
论文数: 0引用数: 0
h-index: 0
机构:
PSL Res Univ, Univ Paris Dauphine, UMR 7534, CEREMADE, F-75016 Paris, France
Coll France, 3 Rue Ulm, F-75005 Paris, FranceEcole Polytech, CMAP, UMR 7641, F-91120 Palaiseau, France
Lions, Pierre-Louis
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES,
2022,
164
: 27
-
56