Characterizing wave functions in graphene nanodevices: Electronic transport through ultrashort graphene constrictions on a boron nitride substrate

被引:43
作者
Bischoff, D. [1 ]
Libisch, F. [2 ]
Burgdoerfer, J. [2 ]
Ihn, T. [1 ]
Ensslin, K. [1 ]
机构
[1] ETH, Solid State Phys Lab, CH-8093 Zurich, Switzerland
[2] Vienna Univ Technol, Inst Theoret Phys, A-1040 Vienna, Austria
基金
瑞士国家科学基金会;
关键词
FABRY-PEROT INTERFERENCE; BALLISTIC TRANSPORT; QUANTUM;
D O I
10.1103/PhysRevB.90.115405
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present electronic transport measurements through short and narrow (30 x 30 nm) single-layer graphene constrictions on a hexagonal boron nitride substrate. While the general observation of Coulomb blockade is compatible with earlier work, the details are not: We show that the area on which charge is localized can be significantly larger than the area of the constriction, suggesting that the localized states responsible for the Coulomb blockade leak out into the graphene bulk. The high bulk mobility of graphene on hexagonal boron nitride, however, seems to be inconsistent with the short bulk localization length required to see Coulomb blockade. To explain these findings, charge must instead be primarily localized along the imperfect edges of the devices and extend along the edge outside of the constriction. In order to better understand the mechanisms, we compare the experimental findings with tight-binding simulations of such constrictions with disordered edges. Finally, we discuss previous experiments in the light of our findings.
引用
收藏
页数:10
相关论文
共 60 条
  • [1] Bai JW, 2010, NAT NANOTECHNOL, V5, P655, DOI [10.1038/NNANO.2010.154, 10.1038/nnano.2010.154]
  • [2] Exceptional ballistic transport in epitaxial graphene nanoribbons
    Baringhaus, Jens
    Ruan, Ming
    Edler, Frederik
    Tejeda, Antonio
    Sicot, Muriel
    Taleb-Ibrahimi, Amina
    Li, An-Ping
    Jiang, Zhigang
    Conrad, Edward H.
    Berger, Claire
    Tegenkamp, Christoph
    de Heer, Walt A.
    [J]. NATURE, 2014, 506 (7488) : 349 - 354
  • [3] Transport in Nanoribbon Interconnects Obtained from Graphene Grown by Chemical Vapor Deposition
    Behnam, Ashkan
    Lyons, Austin S.
    Bae, Myung-Ho
    Chow, Edmond K.
    Islam, Sharnali
    Neumann, Christopher M.
    Pop, Eric
    [J]. NANO LETTERS, 2012, 12 (09) : 4424 - 4430
  • [4] Electronic triple-dot transport through a bilayer graphene island with ultrasmall constrictions
    Bischoff, D.
    Varlet, A.
    Simonet, P.
    Ihn, T.
    Ensslin, K.
    [J]. NEW JOURNAL OF PHYSICS, 2013, 15
  • [5] Reactive-ion-etched graphene nanoribbons on a hexagonal boron nitride substrate
    Bischoff, D.
    Kraehenmann, T.
    Droescher, S.
    Gruner, M. A.
    Barraud, C.
    Ihn, T.
    Ensslin, K.
    [J]. APPLIED PHYSICS LETTERS, 2012, 101 (20)
  • [6] Raman spectroscopy on etched graphene nanoribbons
    Bischoff, D.
    Guettinger, J.
    Droescher, S.
    Ihn, T.
    Ensslin, K.
    Stampfer, C.
    [J]. JOURNAL OF APPLIED PHYSICS, 2011, 109 (07)
  • [7] Graphene Spintronic Devices with Molecular Nanomagnets
    Candini, Andrea
    Klyatskaya, Svetlana
    Ruben, Mario
    Wernsdorfer, Wolfgang
    Affronte, Marco
    [J]. NANO LETTERS, 2011, 11 (07) : 2634 - 2639
  • [8] Graphene nano-ribbon electronics
    Chen, Zhihong
    Lin, Yu-Ming
    Rooks, Michael J.
    Avouris, Phaedon
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2007, 40 (02) : 228 - 232
  • [9] Coulomb gap in graphene nanoribbons
    Droescher, S.
    Knowles, H.
    Meir, Y.
    Ensslin, K.
    Ihn, T.
    [J]. PHYSICAL REVIEW B, 2011, 84 (07):
  • [10] Approaching ballistic transport in suspended graphene
    Du, Xu
    Skachko, Ivan
    Barker, Anthony
    Andrei, Eva Y.
    [J]. NATURE NANOTECHNOLOGY, 2008, 3 (08) : 491 - 495