A new type of finite difference WENO schemes for Hamilton-Jacobi equations

被引:3
作者
Cheng, Xiaohan [1 ]
Feng, Jianhu [1 ]
Zheng, Supei [1 ]
Song, Xueli [1 ]
机构
[1] Changan Univ, Sch Sci, Xian 710064, Shaanxi, Peoples R China
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS C | 2019年 / 30卷 / 2-3期
基金
中国国家自然科学基金;
关键词
Finite difference method; Hamilton-Jacobi equations; WENO reconstruction; nonlinear weights; high-order; SMOOTHNESS INDICATOR; VISCOSITY SOLUTIONS; ENO SCHEMES;
D O I
10.1142/S0129183119500207
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we propose a new type of finite difference weighted essentially nonoscillatory (WENO) schemes to approximate the viscosity solutions of the Hamilton-Jacobi equations. The new scheme has three properties: (1) the scheme is fifth-order accurate in smooth regions while keep sharp discontinuous transitions with no spurious oscillations near discontinuities; (2) the linear weights can be any positive numbers with the symmetry requirement and that their sum equals one; (3) the scheme can avoid the clipping of extrema. Extensive numerical examples are provided to demonstrate the accuracy and the robustness of the proposed scheme.
引用
收藏
页数:16
相关论文
共 25 条
[1]   Symmetrical weighted essentially non-oscillatory-flux limiter schemes for Hamilton-Jacobi equations [J].
Abedian, Rooholah ;
Adibi, Hojatollah ;
Dehghan, Mehdi .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (18) :4710-4728
[2]   An efficient class of WENO schemes with adaptive order [J].
Balsara, Dinshaw S. ;
Garain, Sudip ;
Shu, Chi-Wang .
JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 326 :780-804
[3]   An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws [J].
Borges, Rafael ;
Carmona, Monique ;
Costa, Bruno ;
Don, Wai Sun .
JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (06) :3191-3211
[4]   High-order central WENO schemes for multidimensional Hamilton-Jacobi equations [J].
Bryson, S ;
Levy, D .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (04) :1339-1369
[5]   A sixth-order finite difference WENO scheme for Hamilton-Jacobi equations [J].
Cheng, Xiaohan ;
Feng, Jianhu .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2019, 96 (03) :568-584
[6]  
CRANDALL MG, 1984, MATH COMPUT, V43, P1, DOI 10.1090/S0025-5718-1984-0744921-8
[7]   VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS [J].
CRANDALL, MG ;
LIONS, PL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 277 (01) :1-42
[8]   Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems [J].
Dumbser, Michael ;
Kaeser, Martin .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 221 (02) :693-723
[9]   High Order Strong Stability Preserving Time Discretizations [J].
Gottlieb, Sigal ;
Ketcheson, David I. ;
Shu, Chi-Wang .
JOURNAL OF SCIENTIFIC COMPUTING, 2009, 38 (03) :251-289
[10]   A Sixth-Order Weighted Essentially Non-oscillatory Schemes Based on Exponential Polynomials for Hamilton-Jacobi Equations [J].
Ha, Youngsoo ;
Kim, Chang Ho ;
Yang, Hyoseon ;
Yoon, Jungho .
JOURNAL OF SCIENTIFIC COMPUTING, 2018, 75 (03) :1675-1700