Comparison of statistical model calculations for stable isotope neutron capture

被引:39
作者
Beard, M. [1 ,2 ]
Uberseder, E. [1 ]
Crowter, R. [1 ]
Wiescher, M. [1 ]
机构
[1] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA
[2] GSI Helmholtzzentrum Schwerionenforsch, EMMI, D-64291 Darmstadt, Germany
来源
PHYSICAL REVIEW C | 2014年 / 90卷 / 03期
基金
美国国家科学基金会;
关键词
NUCLEAR-LEVEL-DENSITY; ASTROPHYSICAL REACTION-RATES; CROSS-SECTIONS; R-PROCESS; STRENGTH FUNCTIONS; FINITE NUCLEI; S-PROCESS; NUCLEOSYNTHESIS; RESONANCE; FORMULA;
D O I
10.1103/PhysRevC.90.034619
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
It is a well-observed result that different nuclear input models sensitively affect Hauser-Feshbach (HF) cross-section calculations. Less well-known, however, are the effects on calculations originating from nonmodel aspects, such as experimental data truncation and transmission function energy binning, as well as code-dependent aspects, such as the definition of level-density matching energy and the inclusion of shell correction terms in the level-density parameter. To investigate these aspects, Maxwellian-averaged neutron capture cross sections (MACS) at 30 keV have been calculated using the well-established statistical Hauser-Feshbach model codes TALYS and NON-SMOKER for approximately 340 nuclei. For the same nuclei, MACS predictions have also been obtained using two new HF codes, CIGAR and SAPPHIRE. Details of these two codes, which have been developed to contain an overlapping set of identically implemented nuclear physics input models, are presented. It is generally accepted that HF calculations are valid to within a factor of 3. It was found that this factor is dependent on both model and nonmodel details, such as the coarseness of the transmission function energy binning and data truncation, as well as variances in details regarding the implementation of level-density parameter, backshift, matching energy, and giant dipole strength function parameters.
引用
收藏
页数:11
相关论文
共 66 条
[31]   DENSITY OF DISCRETE LEVELS IN SN-116 [J].
IGNATYUK, AV ;
WEIL, JL ;
RAMAN, S ;
KAHANE, S .
PHYSICAL REVIEW C, 1993, 47 (04) :1504-1513
[32]  
IGNATYUK AV, 1979, SOV J NUCL PHYS+, V29, P450
[33]   OPTICAL-MODEL POTENTIAL IN FINITE NUCLEI FROM REIDS HARD-CORE INTERACTION [J].
JEUKENNE, JP ;
LEJEUNE, A ;
MAHAUX, C .
PHYSICAL REVIEW C, 1977, 16 (01) :80-96
[34]   The s process: Nuclear physics, stellar models, and observations [J].
Kaeppeler, F. ;
Gallino, R. ;
Bisterzo, S. ;
Aoki, Wako .
REVIEWS OF MODERN PHYSICS, 2011, 83 (01) :157-193
[35]   Development of a neutron time-of-flight source at the ELBE accelerator [J].
Klug, J. ;
Altstadt, E. ;
Beckert, C. ;
Beyer, R. ;
Freiesleben, H. ;
Galindo, V. ;
Grosse, E. ;
Junghans, A. R. ;
Legrady, D. ;
Naumann, B. ;
Noack, K. ;
Rusev, G. ;
Schilling, K. D. ;
Schlenk, R. ;
Schneider, S. ;
Wagner, A. ;
Weiss, F.-P. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2007, 577 (03) :641-653
[36]   TALYS-1.0 [J].
Koning, A. J. ;
Hilaire, S. ;
Duijvestijn, M. C. .
INTERNATIONAL CONFERENCE ON NUCLEAR DATA FOR SCIENCE AND TECHNOLOGY, VOL 1, PROCEEDINGS, 2008, :211-+
[37]   A global pre-equilibrium analysis from 7 to 200 MeV based on the optical model potential [J].
Koning, AJ ;
Duijvestijn, MC .
NUCLEAR PHYSICS A, 2004, 744 :15-76
[38]   TEST OF GAMMA-RAY STRENGTH FUNCTIONS IN NUCLEAR-REACTION MODEL-CALCULATIONS [J].
KOPECKY, J ;
UHL, M .
PHYSICAL REVIEW C, 1990, 41 (05) :1941-1955
[39]   Impact of a low-energy enhancement in the γ-ray strength function on the neutron-capture cross section [J].
Larsen, A. C. ;
Goriely, S. .
PHYSICAL REVIEW C, 2010, 82 (01)
[40]   NEUTRON-CAPTURE RATES IN THE R-PROCESS - THE ROLE OF DIRECT RADIATIVE-CAPTURE [J].
MATHEWS, GJ ;
MENGONI, A ;
THIELEMANN, FK ;
FOWLER, WA .
ASTROPHYSICAL JOURNAL, 1983, 270 (02) :740-745