Robust global microRNA expression profiling using next-generation sequencing technologies

被引:117
作者
Tam, Shirley [1 ,2 ,3 ]
de Borja, Richard [3 ]
Tsao, Ming-Sound [1 ,2 ,4 ]
McPherson, John D. [1 ,3 ,4 ]
机构
[1] Univ Toronto, Dept Med Biophys, Toronto, ON, Canada
[2] Univ Hlth Networks, Princess Margaret Canc Ctr, Toronto, ON, Canada
[3] Ontario Inst Canc Res, Toronto, ON M5G 0A3, Canada
[4] Univ Toronto, Dept Lab Med & Pathobiol, Toronto, ON, Canada
关键词
microarray; microRNAs; NanoString; next-generation sequencing; quantitative real-time PCR; DIGITAL GENE-EXPRESSION; DIFFERENTIAL EXPRESSION; MICROARRAY; PLATFORM; LINES; BIOCONDUCTOR; SIGNATURE; MIRBASE; RNAS;
D O I
10.1038/labinvest.2013.157
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
miRNAs are a class of regulatory molecules involved in a wide range of cellular functions, including growth, development and apoptosis. Given their widespread roles in biological processes, understanding their patterns of expression in normal and diseased states will provide insights into the consequences of aberrant expression. As such, global miRNA expression profiling of human malignancies is gaining popularity in both basic and clinically driven research. However, to date, the majority of such analyses have used microarrays and quantitative real-time PCR. With the introduction of digital count technologies, such as next-generation sequencing (NGS) and the NanoString nCounter System, we have at our disposal many more options. To make effective use of these different platforms, the strengths and pitfalls of several miRNA profiling technologies were assessed, including a microarray platform, NGS technologies and the NanoString nCounter System. Overall, NGS had the greatest detection sensitivity, largest dynamic range of detection and highest accuracy in differential expression analysis when compared with gold-standard quantitative real-time PCR. Its technical reproducibility was high, with intrasample correlations of at least 0.95 in all cases. Furthermore, miRNA analysis of formalin-fixed, paraffin-embedded (FFPE) tissue was also evaluated. Expression profiles between paired frozen and FFPE samples were similar, with Spearman's rho > 0.93. These results show the superior sensitivity, accuracy and robustness of NGS for the comprehensive profiling of miRNAs in both frozen and FFPE tissues.
引用
收藏
页码:350 / 358
页数:9
相关论文
共 49 条
[11]   Profiling of pathway-specific changes in gene expression following growth of human cancer cell lines transplanted into mice [J].
Creighton, C ;
Kuick, R ;
Misek, DE ;
Rickman, DS ;
Brichory, FM ;
Rouillard, JM ;
Omenn, GS ;
Hanash, S .
GENOME BIOLOGY, 2003, 4 (07)
[12]   Expression profiling of microRNAs by deep sequencing [J].
Creighton, Chad J. ;
Reid, Jeffrey G. ;
Gunaratne, Preethi H. .
BRIEFINGS IN BIOINFORMATICS, 2009, 10 (05) :490-497
[13]   Analysis of tumor-host interactions by gene expression profiling of lung adenocarcinoma xenografts identifies genes involved in tumor formation [J].
Creighton, CJ ;
Bromberg-White, JL ;
Misek, DE ;
Monsma, DJ ;
Brichory, F ;
Kuick, R ;
Giordano, TJ ;
Gao, WM ;
Omenn, GS ;
Webb, CP ;
Hanash, SM .
MOLECULAR CANCER RESEARCH, 2005, 3 (03) :119-129
[14]   SHRiMP2: Sensitive yet Practical Short Read Mapping [J].
David, Matei ;
Dzamba, Misko ;
Lister, Dan ;
Ilie, Lucian ;
Brudno, Michael .
BIOINFORMATICS, 2011, 27 (07) :1011-1012
[15]   lumi:: a pipeline for processing Illumina microarray [J].
Du, Pan ;
Kibbe, Warren A. ;
Lin, Simon M. .
BIOINFORMATICS, 2008, 24 (13) :1547-1548
[16]   Direct multiplexed measurement of gene expression with color-coded probe pairs [J].
Geiss, Gary K. ;
Bumgarner, Roger E. ;
Birditt, Brian ;
Dahl, Timothy ;
Dowidar, Naeem ;
Dunaway, Dwayne L. ;
Fell, H. Perry ;
Ferree, Sean ;
George, Renee D. ;
Grogan, Tammy ;
James, Jeffrey J. ;
Maysuria, Malini ;
Mitton, Jeffrey D. ;
Oliveri, Paola ;
Osborn, Jennifer L. ;
Peng, Tao ;
Ratcliffe, Amber L. ;
Webster, Philippa J. ;
Davidson, Eric H. ;
Hood, Leroy .
NATURE BIOTECHNOLOGY, 2008, 26 (03) :317-325
[17]   Bioconductor: open software development for computational biology and bioinformatics [J].
Gentleman, RC ;
Carey, VJ ;
Bates, DM ;
Bolstad, B ;
Dettling, M ;
Dudoit, S ;
Ellis, B ;
Gautier, L ;
Ge, YC ;
Gentry, J ;
Hornik, K ;
Hothorn, T ;
Huber, W ;
Iacus, S ;
Irizarry, R ;
Leisch, F ;
Li, C ;
Maechler, M ;
Rossini, AJ ;
Sawitzki, G ;
Smith, C ;
Smyth, G ;
Tierney, L ;
Yang, JYH ;
Zhang, JH .
GENOME BIOLOGY, 2004, 5 (10)
[18]   The influence of tumor size and environment on gene expression in commonly used human tumor lines [J].
Gieseg, MA ;
Man, MZ ;
Gorski, NA ;
Madore, SJ ;
Kaldjian, EP ;
Leopold, WR .
BMC CANCER, 2004, 4 (1)
[19]   The microRNA Registry [J].
Griffiths-Jones, S .
NUCLEIC ACIDS RESEARCH, 2004, 32 :D109-D111
[20]   miRBase: tools for microRNA genomics [J].
Griffiths-Jones, Sam ;
Saini, Harpreet Kaur ;
van Dongen, Stijn ;
Enright, Anton J. .
NUCLEIC ACIDS RESEARCH, 2008, 36 :D154-D158