How to represent crystal structures for machine learning: Towards fast prediction of electronic properties

被引:382
作者
Schuett, K. T. [1 ]
Glawe, H. [2 ]
Brockherde, F. [1 ,2 ]
Sanna, A. [2 ]
Mueller, K. R. [1 ,3 ]
Gross, E. K. U. [2 ]
机构
[1] Tech Univ Berlin, Machine Learning Grp, D-10587 Berlin, Germany
[2] Max Planck Inst Mikrostrukturphys, D-06120 Halle, Germany
[3] Korea Univ, Dept Brain & Cognit Engn, Seoul 136713, South Korea
关键词
HIGH-THROUGHPUT; INITIO;
D O I
10.1103/PhysRevB.89.205118
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
High-throughput density functional calculations of solids are highly time-consuming. As an alternative, we propose a machine learning approach for the fast prediction of solid-state properties. To achieve this, local spin-density approximation calculations are used as a training set. We focus on predicting the value of the density of electronic states at the Fermi energy. We find that conventional representations of the input data, such as the Coulomb matrix, are not suitable for the training of learning machines in the case of periodic solids. We propose a novel crystal structure representation for which learning and competitive prediction accuracies become possible within an unrestricted class of spd systems of arbitrary unit-cell size.
引用
收藏
页数:5
相关论文
共 33 条
[1]   On representing chemical environments [J].
Bartok, Albert P. ;
Kondor, Risi ;
Csanyi, Gabor .
PHYSICAL REVIEW B, 2013, 87 (18)
[2]   Atom-centered symmetry functions for constructing high-dimensional neural network potentials [J].
Behler, Joerg .
JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (07)
[3]  
Billinge S.J.L., 1998, Local Structure from Diffraction
[4]  
Braun ML, 2008, J MACH LEARN RES, V9, P1875
[5]   Carbonophosphates: A New Family of Cathode Materials for Li-Ion Batteries Identified Computationally [J].
Chen, Hailong ;
Hautier, Geoffroy ;
Jain, Anubhav ;
Moore, Charles ;
Kang, Byoungwoo ;
Doe, Robert ;
Wu, Lijun ;
Zhu, Yimei ;
Tang, Yuanzhi ;
Ceder, Gerbrand .
CHEMISTRY OF MATERIALS, 2012, 24 (11) :2009-2016
[6]   High-throughput ab initio analysis of the Bi-In, Bi-Mg, Bi-Sb, In-Mg, In-Sb, and Mg-Sb systems [J].
Curtarolo, S ;
Kolmogorov, AN ;
Cocks, FH .
CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, 2005, 29 (02) :155-161
[7]  
Forman G., 2003, Journal of Machine Learning Research, V3, P1289, DOI 10.1162/153244303322753670
[8]  
Friedman J., 2001, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, V1
[9]   QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials [J].
Giannozzi, Paolo ;
Baroni, Stefano ;
Bonini, Nicola ;
Calandra, Matteo ;
Car, Roberto ;
Cavazzoni, Carlo ;
Ceresoli, Davide ;
Chiarotti, Guido L. ;
Cococcioni, Matteo ;
Dabo, Ismaila ;
Dal Corso, Andrea ;
de Gironcoli, Stefano ;
Fabris, Stefano ;
Fratesi, Guido ;
Gebauer, Ralph ;
Gerstmann, Uwe ;
Gougoussis, Christos ;
Kokalj, Anton ;
Lazzeri, Michele ;
Martin-Samos, Layla ;
Marzari, Nicola ;
Mauri, Francesco ;
Mazzarello, Riccardo ;
Paolini, Stefano ;
Pasquarello, Alfredo ;
Paulatto, Lorenzo ;
Sbraccia, Carlo ;
Scandolo, Sandro ;
Sclauzero, Gabriele ;
Seitsonen, Ari P. ;
Smogunov, Alexander ;
Umari, Paolo ;
Wentzcovitch, Renata M. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2009, 21 (39)
[10]   Assessment and Validation of Machine Learning Methods for Predicting Molecular Atomization Energies [J].
Hansen, Katja ;
Montavon, Gregoire ;
Biegler, Franziska ;
Fazli, Siamac ;
Rupp, Matthias ;
Scheffler, Matthias ;
von Lilienfeld, O. Anatole ;
Tkatchenko, Alexandre ;
Mueller, Klaus-Robert .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2013, 9 (08) :3404-3419