Static and free vibration analyses of small-scale functionally graded beams possessing a variable length scale parameter using different beam theories

被引:68
作者
Aghazadeh, Reza [1 ]
Cigeroglu, Ender [1 ]
Dag, Serkan [1 ]
机构
[1] Middle E Tech Univ, Dept Mech Engn, TR-06800 Ankara, Turkey
关键词
Small-scale beams; Functionally graded materials; Modified couple stress theory; FINITE-ELEMENT; STRESS;
D O I
10.1016/j.euromechsol.2014.01.002
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This article puts forward a modified couple stress theory based approach of analysis for small-scale functionally graded beams, that possess a variable length scale parameter. Presented procedures are capable of predicting static and dynamic beam responses according to three different beam theories, namely: Euler - Bernoulli beam theory, Timoshenko beam theory and third-order shear deformation beam theory. A variational method is used in conjunction with the modified couple stress theory to derive the governing partial differential equations. All properties of the small-scale functionally graded beams - including the length scale parameter - are assumed to be functions of the thickness coordinate in the derivations. The governing equations are solved numerically through the use of the differential quadrature method (DQM). Numerical results are generated for small-scale functionally graded beams, that comprise ceramic and metallic materials as constituent phases. Both small-scale beams subjected to static loading and those undergoing free vibrations are considered in the computations. Comparisons of the numerical results to those available in the literature point out that developed techniques lead to results of high accuracy. Further numerical results are provided, which demonstrate the responses of small-scale functionally graded beams estimated by the three different beam theories as well as provide insight into the influences of material parameters upon the static deflections and natural vibration frequencies. (C) 2014 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 33 条
[1]   Strain gradient interpretation of size effects [J].
Aifantis, EC .
INTERNATIONAL JOURNAL OF FRACTURE, 1999, 95 (1-4) :299-314
[2]  
[Anonymous], 2000, DIFFERENTIAL QUADRAT
[3]   Free vibration analysis of size-dependent functionally graded microbeams based on the strain gradient Timoshenko beam theory [J].
Ansari, R. ;
Gholami, R. ;
Sahmani, S. .
COMPOSITE STRUCTURES, 2011, 94 (01) :221-228
[4]   The modified couple stress functionally graded Timoshenko beam formulation [J].
Asghari, M. ;
Rahaeifard, M. ;
Kahrobaiyan, M. H. ;
Ahmadian, M. T. .
MATERIALS & DESIGN, 2011, 32 (03) :1435-1443
[5]   A nonlinear Timoshenko beam formulation based on the modified couple stress theory [J].
Asghari, M. ;
Kahrobaiyan, M. H. ;
Ahmadian, M. T. .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2010, 48 (12) :1749-1761
[6]   On the size-dependent behavior of functionally graded micro-beams [J].
Asghari, M. ;
Ahmadian, M. T. ;
Kahrobaiyan, M. H. ;
Rahaeifard, M. .
MATERIALS & DESIGN, 2010, 31 (05) :2324-2329
[7]   Gradient elasticity in statics and dynamics: An overview of formulations, length scale identification procedures, finite element implementations and new results [J].
Askes, Harm ;
Aifantis, Elias C. .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2011, 48 (13) :1962-1990
[8]   DIFFERENTIAL QUADRATURE AND LONG-TERM INTEGRATION [J].
BELLMAN, R ;
CASTI, J .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1971, 34 (02) :235-&
[9]   Static analysis of functionally graded short beams including warping and shear deformation effects [J].
Benatta, M. A. ;
Mechab, I. ;
Tounsi, A. ;
Bedia, E. A. Adda .
COMPUTATIONAL MATERIALS SCIENCE, 2008, 44 (02) :765-773
[10]   A comparison of micro-switch analytic, finite element, and experimental results [J].
Coutu, RA ;
Kladitis, PE ;
Starman, LA ;
Reid, JR .
SENSORS AND ACTUATORS A-PHYSICAL, 2004, 115 (2-3) :252-258