Membrane bubble column reactor model for the production of hydrogen by methane pyrolysis

被引:30
作者
Farmer, Thomas C. [1 ]
McFarland, Eric W. [1 ]
Doherty, Michael F. [1 ]
机构
[1] Univ Calif Santa Barbara, Chem Engn, Santa Barbara, CA 93106 USA
关键词
Hydrogen energy; Membrane reactor; Process intensification; Molten metal; Methane pyrolysis; MOLTEN METALS; CATALYTIC DECOMPOSITION; CRACKING;
D O I
10.1016/j.ijhydene.2019.03.023
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A membrane reactor model is developed to describe, model, and design molten metal methane pyrolysis bubble column reactors. It is utilized to demonstrate that a membrane reactor allows conversions in excess of the equilibrium conversion implied by the feed and operating conditions. Ultra-high conversion eliminates the need to separate product hydrogen from unreacted methane, thereby eliminating the need to recycle un-reacted methane and reducing the total equipment sizes and energy costs. Furthermore, it is shown that the hydrogen can be completely removed through the membrane reactor walls before the gas bubbles breakthrough the molten metal layer into the reactor headspace. The equations also apply to non-membrane reactors, and are therefore useful for future general conceptual design studies. The general applicability is demonstrated by comparison of the model predictions to published experimental data on methane pyrolysis in a non-membrane bubble column reactor. (C) 2019 Published by Elsevier Ltd on behalf of Hydrogen Energy Publications LLC.
引用
收藏
页码:14721 / 14731
页数:11
相关论文
共 28 条
[1]   Technological challenges for industrial development of hydrogen production based on methane cracking [J].
Abanades, A. ;
Rubbia, C. ;
Salmieri, D. .
ENERGY, 2012, 46 (01) :359-363
[2]   Experimental analysis of direct thermal methane cracking [J].
Abanades, A. ;
Ruiz, E. ;
Ferruelo, E. M. ;
Hernandez, F. ;
Cabanillas, A. ;
Martinez-Val, J. M. ;
Rubio, J. A. ;
Lopez, C. ;
Gavela, R. ;
Barrera, G. ;
Rubbia, C. ;
Salmieri, D. ;
Rodilla, E. ;
Gutierrez, D. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (20) :12877-12886
[3]   Development of methane decarbonisation based on liquid metal technology for CO2-free production of hydrogen [J].
Abanades, Alberto ;
Rathnam, Renu Kumar ;
Geissler, Tobias ;
Heinzel, Annette ;
Mehravaran, Kian ;
Mueller, George ;
Plevan, Michael ;
Rubbia, Carlo ;
Salmieri, Delia ;
Stoppel, Leonid ;
Stueckrad, Stefan ;
Weisenburger, Alfons ;
Wenninger, Horst ;
Wetzel, Thomas .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (19) :8159-8167
[4]   Hydrogen production via the direct cracking of methane over Ni/SiO2:: catalyst deactivation and regeneration [J].
Aiello, R ;
Fiscus, JE ;
zur Loye, HC ;
Amiridis, MD .
APPLIED CATALYSIS A-GENERAL, 2000, 192 (02) :227-234
[5]   BUBBLE SIZE, INTERFACIAL AREA, AND LIQUID-PHASE MASS-TRANSFER COEFFICIENT IN BUBBLE COLUMNS [J].
AKITA, K ;
YOSHIDA, F .
INDUSTRIAL & ENGINEERING CHEMISTRY PROCESS DESIGN AND DEVELOPMENT, 1974, 13 (01) :84-91
[6]  
ANDREINI RJ, 1977, METALL TRANS B, V8, P625, DOI 10.1007/BF02658632
[7]  
[Anonymous], 2017, U. S. application serial no, Patent No. [62/586,943, 62586943]
[8]  
[Anonymous], 2018, U. S. application serial no, Patent No. [62/674,268, 62674268]
[9]   Hydrogen production via catalytic decomposition of methane [J].
Choudhary, TV ;
Sivadinarayana, C ;
Chusuei, CC ;
Klinghoffer, A ;
Goodman, DW .
JOURNAL OF CATALYSIS, 2001, 199 (01) :9-18
[10]  
EIA, 2018, TECH REP