Development of Carbon Nanotube Based Biosensors Model for Detection of Single-Nucleotide Polymorphism

被引:19
作者
Abadi, Hediyeh Karimi Feiz [1 ,2 ]
Ahmadi, M. T. [3 ,4 ]
Yusof, Rubiyah [2 ]
Saeidmanesh, Mehdi [3 ]
Rahmani, Meisam [3 ]
Kiani, Mohammad Javad [3 ]
Ghadiry, Mahdiar [5 ]
机构
[1] Univ Teknol Malaysia, Malaysia Japan Int Inst Technol MJIIT, Skudai 54100, Johore, Malaysia
[2] Univ Teknol Malaysia, Ctr Artificial Intelligence & Robot CAIRO, Skudai 81310, Johor, Malaysia
[3] Univ Teknol Malaysia, Computat Nanoelect Res Grp, Fac Elect Engn, Johor Baharu 81310, Malaysia
[4] Nanotechnol Res Ctr, Nanoelect Grp, Dept Phys, Orumiyeh, Iran
[5] Islamic Azad Univ, Arak Branch, Dept Comp Engn, Arak, Iran
关键词
Biosensor Analytical Model; Carbon Nanotube Based FETs; DNA Hybridization Detection; SNP; Hemochromatosis; GRAPHENE; CELLS;
D O I
10.1166/sam.2014.1745
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Carbon nanotube network (CNT) based DNA nanosensors have outstanding potential as selective detectors of DNA immobilization and hybridization for genetic researchers to understand the progression of disease, develop diagnostics and therapeutics. In this paper, a model is developed in recognition of target DNA sequences for nanosensors based on carbon nanotube field-effect transistors (CNTFETs). We start by modeling the H63D single-nucleotide polymorphism (SNP) discrimination in the HFE gene, which is responsible for hereditary hemochromatosis, as a function of CNT conductance. Moreover, two fitting parameters of beta and gamma are obtained from comparison of experimental and modeling data of CNT conductance behavior in CNTFETs devices. To continue, a CNT conductance modeling is proposed for electrical detection of DNA hybridization, where the DNA concentration is considered as a function of gate voltage. Finally the proposed models for wild type-wild type and wild type-mutant DNA combinations are compared with experimental data and a good agreement is reported.
引用
收藏
页码:513 / 519
页数:7
相关论文
共 40 条
[1]  
Ahmadi M. T., 2010, J NANOMATER, V12
[2]  
Ahmadi M. T., 2010, IEEE, V256
[3]   Molecular electronics with carbon nanotubes [J].
Avouris, P .
ACCOUNTS OF CHEMICAL RESEARCH, 2002, 35 (12) :1026-1034
[4]   Modelling carbon nanotube based biosensor [J].
Baronas, Romas ;
Kulys, Juozas ;
Petrauskas, Karolis ;
Razumiene, Julija .
JOURNAL OF MATHEMATICAL CHEMISTRY, 2011, 49 (05) :995-1010
[5]   Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors [J].
Chen, RJ ;
Bangsaruntip, S ;
Drouvalakis, KA ;
Kam, NWS ;
Shim, M ;
Li, YM ;
Kim, W ;
Utz, PJ ;
Dai, HJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (09) :4984-4989
[6]   Amphiphilic helical peptide enhances the uptake of single-walled carbon nanotubes by living cells [J].
Chin, Shook-Fong ;
Baughman, Ray H. ;
Dalton, Alan B. ;
Dieckmann, Gregg R. ;
Draper, Rockford K. ;
Mikoryak, Carole ;
Musselman, Inga H. ;
Poenitzsch, Vasiliki Z. ;
Xie, Hui ;
Pantano, Paul .
EXPERIMENTAL BIOLOGY AND MEDICINE, 2007, 232 (09) :1236-1244
[7]   Extreme oxygen sensitivity of electronic properties of carbon nanotubes [J].
Collins, PG ;
Bradley, K ;
Ishigami, M ;
Zettl, A .
SCIENCE, 2000, 287 (5459) :1801-1804
[8]  
Datta S., 2002, Electronic Transport in Mesoscopic Systems
[9]  
Dingle R.B., 1973, ASYMPTOTIC EXPANSION
[10]  
Dong L.-X., 2010, Front. Mater. Sci. China, V4, P45, DOI [10.1007/s11706-010-0014-3, DOI 10.1007/S11706-010-0014-3]