On solutions for global Stein optimization problems with applications

被引:0
作者
Ralescu, S [1 ]
机构
[1] CUNY Queens Coll, Dept Math, Flushing, NY 11367 USA
关键词
stein estimation; spherical symmetry; global optimization; minimaxity;
D O I
10.1016/S0378-3758(01)00233-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper investigates generalized Stein estimation under spherically symmetric distributions. We reconsider important results on possible improvements over the best invariant estimator by shrinkage estimators through a successful analytic technique via a global optimization problem. Specifically, minimaxity of the James-Stein estimators for p-variate shift models with p greater than or equal to 4 and general spherically symmetric distributions is instructively demonstrated, In addition, we derive a robustness result for the (formal) Bayes estimators of Stein (Ann. Statist. 9 (1981)) by showing that they continue to be minimax for certain non-normal distributions. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:391 / 400
页数:10
相关论文
共 15 条
[1]  
[Anonymous], 1970, INTRO POTENTIAL THEO
[2]   MINIMAX ESTIMATION OF LOCATION VECTORS FOR A WIDE CLASS OF DENSITIES [J].
BERGER, J .
ANNALS OF STATISTICS, 1975, 3 (06) :1318-1328
[3]   GENERALIZATIONS OF JAMES-STEIN ESTIMATORS UNDER SPHERICAL-SYMMETRY [J].
BRANDWEIN, AC ;
STRAWDERMAN, WE .
ANNALS OF STATISTICS, 1991, 19 (03) :1639-1650
[4]   MINIMAX ESTIMATION OF THE MEAN OF SPHERICALLY SYMMETRIC DISTRIBUTIONS UNDER GENERAL QUADRATIC LOSS [J].
BRANDWEIN, AC .
JOURNAL OF MULTIVARIATE ANALYSIS, 1979, 9 (04) :579-588
[5]   SHRINKAGE ESTIMATORS OF THE LOCATION PARAMETER FOR CERTAIN SPHERICALLY SYMMETRICAL DISTRIBUTIONS [J].
BRANDWEIN, AC ;
RALESCU, S ;
STRAWDERMAN, WE .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1993, 45 (03) :551-565
[6]  
Brandwein AC., 1990, Statistical Science, V5, P356, DOI DOI 10.1214/SS/1177012104
[7]  
EVANS SN, 1997, ANN STAT, P809
[8]  
Fourdrinier D, 1998, ANN STAT, V26, P660
[9]  
JAMES W, 1961, 4TH P BERK S MATH ST, V1, P361
[10]   INVARIANCE, MINIMAX SEQUENTIAL ESTIMATION, AND CONTINUOUS-TIME PROCESSES [J].
KIEFER, J .
ANNALS OF MATHEMATICAL STATISTICS, 1957, 28 (03) :573-601