Protein Kinase G Iα Inhibits Pressure Overload-Induced Cardiac Remodeling and Is Required for the Cardioprotective Effect of Sildenafil In Vivo

被引:64
|
作者
Blanton, Robert M. [1 ,2 ]
Takimoto, Eiki [4 ]
Lane, Angela M. [1 ,2 ]
Aronovitz, Mark [1 ,2 ]
Piotrowski, Robert [3 ]
Karas, Richard H. [1 ,2 ]
Kass, David A. [4 ]
Mendelsohn, Michael E. [1 ,2 ]
机构
[1] Tufts Med Ctr, Mol Cardiol Res Inst, Boston, MA 02111 USA
[2] Tufts Med Ctr, Div Cardiol, Boston, MA 02111 USA
[3] Tufts Med Ctr, Dept Med, Boston, MA 02111 USA
[4] Johns Hopkins Sch Med, Dept Med, Div Cardiol, Baltimore, MD USA
来源
JOURNAL OF THE AMERICAN HEART ASSOCIATION | 2012年 / 1卷 / 05期
关键词
heart failure; nitric oxide; protein kinase G; remodeling heart failure; signal transduction; ATRIAL-NATRIURETIC-PEPTIDE; NITRIC-OXIDE; HYPERTROPHY; MICE; DYSFUNCTION; HEMODYNAMICS; HYPERTENSION; APOPTOSIS; DELETION; GROWTH;
D O I
10.1161/JAHA.112.003731
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background-Cyclic GMP (cGMP) signaling attenuates cardiac remodeling, but it is unclear which cGMP effectors mediate these effects and thus might serve as novel therapeutic targets. Therefore, we tested whether the cGMP downstream effector, cGMP-dependent protein kinase G I alpha (PKGI alpha), attenuates pressure overload-induced remodeling in vivo. Methods and Results-The effect of transaortic constriction (TAC)-induced left ventricular (LV) pressure overload was examined in mice with selective mutations in the PKGI alpha leucine zipper interaction domain. Compared with wild-type littermate controls, in response to TAC, these Leucine Zipper Mutant (LZM) mice developed significant LV systolic and diastolic dysfunction by 48 hours (n=6 WT sham, 6 WT TAC, 5 LZM sham, 9 LZM TAC). In response to 7-day TAC, the LZM mice developed increased pathologic hypertrophy compared with controls (n=5 WT sham, 4 LZM sham, 8 WT TAC, 11 LZM TAC). In WT mice, but not in LZM mice, phosphodiesterase 5 (PDE5) inhibition with sildenafil (Sil) significantly inhibited TAC-induced cardiac hypertrophy and LV systolic dysfunction in WT mice, but this was abolished in the LZM mice (n=3 WT sham, 4 LZM sham, 3 WT TAC vehicle, 6 LZM TAC vehicle, 4 WT TAC Sil, 6 LZM TAC Sil). And in response to prolonged, 21-day TAC (n=8 WT sham, 7 LZM sham, 21 WT TAC, 15 LZM TAC), the LZM mice developed markedly accelerated mortality and congestive heart failure. TAC induced activation of JNK, which inhibits cardiac remodeling in vivo, in WT, but not in LZM, hearts, identifying a novel signaling pathway activated by PKGI alpha in the heart in response to LV pressure overload. Conclusions-These findings reveal direct roles for PKGI alpha in attenuating pressure overload-induced remodeling in vivo and as a required effector for the cardioprotective effects of sildenafil.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] G13-Mediated Signaling Pathway Is Required for Pressure Overload-Induced Cardiac Remodeling and Heart Failure
    Takefuji, Mikito
    Wirth, Angela
    Lukasova, Martina
    Takefuji, Seiko
    Boettger, Thomas
    Braun, Thomas
    Althoff, Till
    Offermanns, Stefan
    Wettschureck, Nina
    CIRCULATION, 2012, 126 (16) : 1972 - +
  • [2] Midkine exacerbates pressure overload-induced cardiac remodeling
    Netsu, Shunsuke
    Shishido, Tetsuro
    Kitahara, Tatsuro
    Honda, Yuki
    Funayama, Akira
    Narumi, Taro
    Kadowaki, Shinpei
    Takahashi, Hiroki
    Miyamoto, Takuya
    Arimoto, Takanori
    Nishiyama, Satoshi
    Watanabe, Tetsu
    Woo, Chang-Hoon
    Takeishi, Yasuchika
    Kubota, Isao
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2014, 443 (01) : 205 - 210
  • [3] Effect of Irisin on Pressure Overload-Induced Cardiac Remodeling
    Peng, Qing
    Ding, Ruilin
    Wang, Xiaojie
    Yang, Ping
    Jiang, Feng
    Chen, Xiaoping
    ARCHIVES OF MEDICAL RESEARCH, 2021, 52 (02) : 182 - 190
  • [4] Oleanolic acid alleviated pressure overload-induced cardiac remodeling
    Liao, Hai-Han
    Zhang, Nan
    Feng, Hong
    Zhang, Ning
    Ma, Zhen-Guo
    Yang, Zheng
    Yuan, Yuan
    Bian, Zhou-Yan
    Tang, Qi-Zhu
    MOLECULAR AND CELLULAR BIOCHEMISTRY, 2015, 409 (1-2) : 145 - 154
  • [5] Distinct Effects of Leukocyte and Cardiac Phosphoinositide 3-Kinase γ Activity in Pressure Overload-Induced Cardiac Failure
    Damilano, Federico
    Franco, Irene
    Perrino, Cinzia
    Schaefer, Katrin
    Azzolino, Ornella
    Carnevale, Daniela
    Cifelli, Giuseppe
    Carullo, Pierluigi
    Ragona, Riccardo
    Ghigo, Alessandra
    Perino, Alessia
    Lembo, Giuseppe
    Hirsch, Emilio
    CIRCULATION, 2011, 123 (04) : 391 - 399
  • [6] Critical roles of macrophages in pressure overload-induced cardiac remodeling
    Yang, Dan
    Liu, Han-Qing
    Liu, Fang-Yuan
    Tang, Nan
    Guo, Zhen
    Ma, Shu-Qing
    An, Peng
    Wang, Ming-Yu
    Wu, Hai-Ming
    Yang, Zheng
    Fan, Di
    Tang, Qi-Zhu
    JOURNAL OF MOLECULAR MEDICINE-JMM, 2021, 99 (01): : 33 - 46
  • [7] Paeoniflorin improves pressure overload-induced cardiac remodeling by modulating the MAPK signaling pathway in spontaneously hypertensive rats
    Liu, Xin
    Chen, Kai
    Zhuang, Yuxin
    Huang, Yu
    Sui, Yukun
    Zhang, Yubin
    Lv, Lin
    Zhang, Guohua
    BIOMEDICINE & PHARMACOTHERAPY, 2019, 111 : 695 - 704
  • [8] The protective effect of high mobility group protein HMGA2 in pressure overload-induced cardiac remodeling
    Wu, Qing-Qing
    Xiao, Yang
    Liu, Chen
    Duan, Mingxia
    Cai, Zhulan
    Xie, Saiyang
    Yuan, Yuan
    Wu, Haiming
    Deng, Wei
    Tang, Qizhu
    JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2019, 128 : 160 - 178
  • [9] Innate Immune Cells in Pressure Overload-Induced Cardiac Hypertrophy and Remodeling
    Liu, Xin
    Shi, Guo-Ping
    Guo, Junli
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2021, 9
  • [10] Tauroursodeoxycholic acid (TUDCA) attenuates pressure overload-induced cardiac remodeling by reducing endoplasmic reticulum stress
    Rani, Shilpa
    Sreenivasaiah, Pradeep Kumar
    Kim, Jin Ock
    Lee, Mi Young
    Kang, Wan Seok
    Kim, Yong Sook
    Ahn, Youngkeun
    Park, Woo Jin
    Cho, Chunghee
    Kim, Do Han
    PLOS ONE, 2017, 12 (04):