The Minimum Hamming Distance of Cyclic Codes of Length 2 ps

被引:0
作者
Ozadam, Hakan [1 ]
Ozbudak, Ferruh [1 ]
机构
[1] Middle E Tech Univ, Inst Appl Math, Dept Mat, TR-06531 Ankara, Turkey
来源
APPLIED ALGEBRA, ALGEBRAIC ALGORITHMS, AND ERROR-CORRECTING CODES | 2009年 / 5527卷
关键词
Cyclic code; repeated-root cyclic code; Hamming distance;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study cyclic codes of length 2p(s) over F-q where p is an odd prime. Using the results of [1], we compute the minimum Hamming distance of these codes.
引用
收藏
页码:92 / +
页数:2
相关论文
共 9 条
[1]   ON REPEATED-ROOT CYCLIC CODES [J].
CASTAGNOLI, G ;
MASSEY, JL ;
SCHOELLER, PA ;
VONSEEMANN, N .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (02) :337-342
[2]  
DIHN HQ, 2008, FINITE FIELDS APPL, V14, P22
[3]  
Lidl R., 1997, FINITE FIELDS, V20
[4]  
LOPEZPERMOUTH SR, 2009, HAMMING WEIGHT REPEA
[5]  
MacWilliams F.J., 1978, The Theory of Error-Correcting Codes, V2nd
[6]  
OZADAM H, 2009, NOTE NEGACYCLI UNPUB
[7]   Repeated-root cyclic and negacyclic codes over a finite chain ring [J].
Salagean, A .
DISCRETE APPLIED MATHEMATICS, 2006, 154 (02) :413-419
[8]   REPEATED-ROOT CYCLIC CODES [J].
VANLINT, JH .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (02) :343-345
[9]   On generalizations of repeated-root cyclic codes [J].
Zimmermann, KH .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1996, 42 (02) :641-649