Machine-learning-based multiple abnormality prediction with large-scale chest computed tomography volumes

被引:45
作者
Draelos, Rachel Lea [1 ,2 ]
Dov, David [3 ]
Mazurowski, Maciej A. [3 ,4 ,5 ]
Lo, Joseph Y. [3 ,4 ,6 ]
Henao, Ricardo [3 ,5 ]
Rubin, Geoffrey D. [4 ]
Carin, Lawrence [1 ,3 ,7 ]
机构
[1] Duke Univ, Comp Sci Dept, LSRC Bldg D101,308 Res Dr,Duke Box 90129, Durham, NC 27708 USA
[2] Duke Univ, Sch Med, DUMC 3710, Durham, NC 27710 USA
[3] Duke Univ, Elect & Comp Engn Dept, Edmund T Pratt Jr Sch Engn, Box 90291, Durham, NC 27708 USA
[4] Duke Univ, Radiol Dept, Box 3808 DUMC, Durham, NC 27710 USA
[5] Duke Univ, Biostat & Bioinformat Dept, DUMC 2424 Erwin Rd,Suite 1102 Hock Plaza,Box 2721, Durham, NC 27710 USA
[6] Duke Univ, Edmund T Pratt Jr Sch Engn, Biomed Engn Dept, Fitzpatrick Ctr FCIEMAS, Room 1427,101 Sci Dr,Campus Box 90281, Durham, NC 27708 USA
[7] Duke Univ, Stat Sci Dept, Box 90251, Durham, NC 27708 USA
关键词
chest computed tomography; multilabel classification; convolutional neural network; deep learning; machine learning; CONVOLUTIONAL NEURAL-NETWORKS; LUNG NODULES; CT; CLASSIFICATION; RADIOGRAPHY; PNEUMONIA; ALGORITHM; DISEASES; DATABASE; CANCER;
D O I
10.1016/j.media.2020.101857
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Machine learning models for radiology benefit from large-scale data sets with high quality labels for abnormalities. We curated and analyzed a chest computed tomography (CT) data set of 36,316 volumes from 19,993 unique patients. This is the largest multiply-annotated volumetric medical imaging data set reported. To annotate this data set, we developed a rule-based method for automatically extracting abnormality labels from free-text radiology reports with an average F-score of 0.976 (min 0.941, max 1.0). We also developed a model for multi-organ, multi-disease classification of chest CT volumes that uses a deep convolutional neural network (CNN). This model reached a classification performance of AUROC > 0.90 for 18 abnormalities, with an average AUROC of 0.773 for all 83 abnormalities, demonstrating the feasibility of learning from unfiltered whole volume CT data. We show that training on more labels improves performance significantly: for a subset of 9 labels - nodule, opacity, atelectasis, pleural effusion, consolidation, mass, pericardial effusion, cardiomegaly, and pneumothorax - the model's average AUROC increased by 10% when the number of training labels was increased from 9 to all 83. All code for volume preprocessing, automated label extraction, and the volume abnormality prediction model is publicly available. The 36,316 CT volumes and labels will also be made publicly available pending institutional approval. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 80 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]  
Annarumma M, 2019, RADIOLOGY, V291, P195, DOI 10.1148/radiol.2018180921
[3]  
[Anonymous], 2017, P 15 C EUR CHAPT ASS
[4]  
[Anonymous], 2019, MIMIC-CXR: a large publicly available database of labeled chest radiographs
[5]  
[Anonymous], 2016, VERY DEEP CONVOLUTIO
[6]  
[Anonymous], AMIA ANN S P
[7]   Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network [J].
Anthimopoulos, Marios ;
Christodoulidis, Stergios ;
Ebner, Lukas ;
Christe, Andreas ;
Mougiakakou, Stavroula .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (05) :1207-1216
[8]   End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography [J].
Ardila, Diego ;
Kiraly, Atilla P. ;
Bharadwaj, Sujeeth ;
Choi, Bokyung ;
Reicher, Joshua J. ;
Peng, Lily ;
Tse, Daniel ;
Etemadi, Mozziyar ;
Ye, Wenxing ;
Corrado, Greg ;
Naidich, David P. ;
Shetty, Shravya .
NATURE MEDICINE, 2019, 25 (06) :954-+
[9]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[10]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300