Lp MAPPING PROPERTIES OF THE BERGMAN PROJECTION ON THE HARTOGS TRIANGLE

被引:56
作者
Chakrabarti, Debraj [1 ]
Zeytuncu, Yunus E. [2 ]
机构
[1] Cent Michigan Univ, Dept Math, Mt Pleasant, MI 48859 USA
[2] Univ Michigan, Dept Math & Stat, Dearborn, MI 48128 USA
关键词
Bergman projection; Hartogs triangle; L-p regularity; DOMAINS; IRREGULARITY;
D O I
10.1090/proc/12820
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove optimal estimates for the mapping properties of the Bergman projection on the Hartogs triangle in weighted L-p spaces when p > 4/3, where the weight is a power of the distance to the singular boundary point. For 1 < p <= 4/3 we show that no such weighted estimates are possible.
引用
收藏
页码:1643 / 1653
页数:11
相关论文
共 19 条
[1]  
[Anonymous], 2008, GRADUATE TEXTS MATH, DOI DOI 10.1007/978-0-387-09432-8_1
[2]   Irregularity of the Bergman Projection on Worm Domains in Cn [J].
Barrett, David ;
Sahutoglu, Soenmez .
MICHIGAN MATHEMATICAL JOURNAL, 2012, 61 (01) :187-198
[3]   IRREGULARITY OF THE BERGMAN PROJECTION ON A SMOOTH BOUNDED DOMAIN IN C2 [J].
BARRETT, DE .
ANNALS OF MATHEMATICS, 1984, 119 (02) :431-436
[4]   PROPER HOLOMORPHIC MAPPINGS AND THE BERGMAN PROJECTION [J].
BELL, SR .
DUKE MATHEMATICAL JOURNAL, 1981, 48 (01) :167-175
[5]  
Boas H.P., 1999, SEVERAL COMPLEX VARI, V37, P79
[6]  
Chakrabarti D, 2013, MATH ANN, V356, P241, DOI 10.1007/s00208-012-0840-y
[7]  
Chaumat J., 1991, ANN I FOURIER GRENOB, V41, P867
[8]  
Chen Liwei, 2013, ARXIV13047898
[9]   Lp-estimates for the Bergman projection on strictly pseudoconvex non-smooth domains [J].
Ehsani, Dariush ;
Lieb, Ingo .
MATHEMATISCHE NACHRICHTEN, 2008, 281 (07) :916-929
[10]   PROJECTIONS ON SPACES OF HOLOMORPHIC FUNCTIONS IN BALLS [J].
FORELLI, F ;
RUDIN, W .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1974, 24 (06) :593-602