Combined Numerical Schemes

被引:6
作者
Bragin, M. D. [1 ,2 ]
Kovyrkina, O. A. [3 ]
Ladonkina, M. E. [1 ]
Ostapenko, V. V. [3 ]
Tishkin, V. F. [1 ]
Khandeeva, N. A. [3 ]
机构
[1] Russian Acad Sci, Keldysh Inst Appl Math, Fed Res Ctr, Moscow 125047, Russia
[2] Natl Res Univ, Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow, Russia
[3] Russian Acad Sci, Lavrentyev Inst Hydrodynam, Siberian Branch, Novosibirsk 630090, Russia
基金
中国国家自然科学基金; 俄罗斯基础研究基金会; 俄罗斯科学基金会;
关键词
hyperbolic systems of conservation laws; shock waves; high-order accurate shock-capturing methods; combined schemes; DISCONTINUOUS GALERKIN METHOD; FINITE-DIFFERENCE SCHEMES; SCALAR CONSERVATION LAW; HIGHER-ORDER ACCURACY; CABARET SCHEME; BICOMPACT SCHEMES; EFFICIENT IMPLEMENTATION; MONOTONICITY; APPROXIMATION; SYSTEMS;
D O I
10.1134/S0965542522100025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A survey of works concerning high-order accurate numerical methods designed for shock-capturing computations of discontinuous solutions to hyperbolic systems of conservation laws is presented. The basic problems arising in the theory of such methods are formulated, and approaches to their solution are proposed. Primary attention is given to fundamentally new shock-capturing methods (known as combined schemes) that monotonically localize shock fronts, while preserving high accuracy in shock influence areas. Test computations are presented that demonstrate the significant advantages of combined schemes over standard NFC ones when applied to computing discontinuous solutions with shock waves.
引用
收藏
页码:1743 / 1781
页数:39
相关论文
共 99 条
[1]   DIAGONALLY IMPLICIT RUNGE-KUTTA METHODS FOR STIFF ODES [J].
ALEXANDER, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1977, 14 (06) :1006-1021
[2]  
[Anonymous], 1972, HYPERBOLIC SYSTEMS C
[3]   Vector cell-average multiresolution based on Hermite interpolation [J].
Aràndiga F. ;
Baeza A. ;
Donat R. .
Advances in Computational Mathematics, 2008, 28 (1) :1-22
[4]   Unified analysis of discontinuous Galerkin methods for elliptic problems [J].
Arnold, DN ;
Brezzi, F ;
Cockburn, B ;
Marini, LD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) :1749-1779
[5]   HIGHER-ORDER ACCURACY DIFFERENCE METHOD FOR COMPUTING VISCOUS-GAS FLOWS [J].
BELOTSERKOVSKII, OM ;
BYRKIN, AP ;
MAZUROV, AP ;
TOLSTYKH, AI .
USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1982, 22 (06) :206-216
[6]  
BERGER AE, 1980, MATH COMPUT, V35, P695, DOI 10.1090/S0025-5718-1980-0572850-8
[7]   Accuracy of Bicompact Schemes in the Problem of Taylor-Green Vortex Decay [J].
Bragin, M. D. ;
Rogov, B., V .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2021, 61 (11) :1723-1742
[8]   High‑Order Bicompact Schemes for Numerical Modeling of Multispecies Multi-Reaction Gas Flows [J].
Bragin M.D. ;
Rogov B.V. .
Mathematical Models and Computer Simulations, 2021, 13 (1) :106-115
[9]   Bicompact Schemes for the Multidimensional Convection-Diffusion Equation [J].
Bragin, M. D. ;
Rogov, B., V .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2021, 61 (04) :607-624
[10]   Combined Multidimensional Bicompact Scheme with Higher Order Accuracy in Domains of Influence of Nonstationary Shock Waves [J].
Bragin, M. D. ;
Rogov, B., V .
DOKLADY MATHEMATICS, 2020, 102 (02) :360-363