Field theories and exact stochastic equations for interacting particle systems

被引:29
作者
Andreanov, Alexei [1 ]
Biroli, Giulio
Bouchaud, Jean-Philippe
Lefevre, Alexandre
机构
[1] CEA Saclay, Serv Phys Theor, F-91191 Gif Sur Yvette, France
[2] CEA Saclay, Serv Phys Etat Condense, F-91191 Gif Sur Yvette, France
[3] Capital Fund Management, Sci & Finance, F-75009 Paris, France
来源
PHYSICAL REVIEW E | 2006年 / 74卷 / 03期
关键词
D O I
10.1103/PhysRevE.74.030101
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider the dynamics of interacting particles with reaction and diffusion. Starting from the underlying discrete stochastic jump process we derive a general field theory describing the dynamics of the density field, which we relate to an exact stochastic equation on the density field. We show how our field theory maps onto the original Doi-Peliti formalism, allowing us to clarify further the issue of the "imaginary" Langevin noise that appears in the context of reaction-diffusion processes. Our procedure applies to a wide class of problems and is related to large deviation functional techniques developed recently to describe fluctuations of nonequilibrium systems in the hydrodynamic limit.
引用
收藏
页数:4
相关论文
共 32 条
[1]   Dynamical field theory for glass-forming liquids, self-consistent resummations and time-reversal symmetry [J].
Andreanov, A. ;
Biroli, G. ;
Lefevre, A. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2006,
[2]   Current fluctuations in stochastic lattice gases [J].
Bertini, L ;
De Sole, A ;
Gabrielli, D ;
Jona-Lasinio, G ;
Landim, C .
PHYSICAL REVIEW LETTERS, 2005, 94 (03)
[3]   Macroscopic fluctuation theory for stationary non-equilibrium states [J].
Bertini, L ;
De Sole, A ;
Gabrielli, D ;
Jona-Lasinio, G ;
Landim, C .
JOURNAL OF STATISTICAL PHYSICS, 2002, 107 (3-4) :635-675
[4]   Fluctuations in stationary nonequilibrium states of irreversible processes [J].
Bertini, L ;
De Sole, A ;
Gabrielli, D ;
Jona-Lasinio, G ;
Landim, C .
PHYSICAL REVIEW LETTERS, 2001, 87 (04) :40601-1
[5]  
BIROLI G, UNPUB
[6]   SELF-CONSISTENT APPROACH TO THE KARDAR-PARISI-ZHANG EQUATION [J].
BOUCHAUD, JP ;
CATES, ME .
PHYSICAL REVIEW E, 1993, 47 (03) :R1455-R1458
[7]   ON THE CRITICAL-BEHAVIOR OF THE SCHLOGL MODEL [J].
BRACHET, ME ;
TIRAPEGUI, E .
PHYSICS LETTERS A, 1981, 81 (04) :211-214
[8]  
Cardy J., UNPUB
[9]   FLUCTUATING NONLINEAR HYDRODYNAMICS AND THE LIQUID-GLASS TRANSITION [J].
DAS, SP ;
MAZENKO, GF .
PHYSICAL REVIEW A, 1986, 34 (03) :2265-2282
[10]   Langevin equation for the density of a system of interacting Langevin processes [J].
Dean, DS .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (24) :L613-L617