On a conjecture of Oguiso about rational curves on Calabi-Yau threefolds

被引:6
作者
Diverio, Simone [1 ]
Ferretti, Andrea [2 ]
机构
[1] Univ Paris 06, UMR7586, CNRS, Inst Math Jussieu Paris Rive Gauche, F-75005 Paris, France
[2] Univ Lille 1, Lab Paul Painleve, F-59655 Villeneuve Dascq, France
关键词
Calabi-Yau threefold; rational curve; nef cone; rational points of cubic forms; Kobayashi's conjecture; MANIFOLDS;
D O I
10.4171/CMH/315
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a Calabi-Yau threefold. We show that if there exists on X a non-zero nef non-ample divisor then X contains a rational curve, provided its second Betti number is greater than 4.
引用
收藏
页码:157 / 172
页数:16
相关论文
共 19 条
[1]  
[Anonymous], 1998, Cambridge Tracts in Mathematics
[2]  
BEAUVILLE A, 1983, J DIFFER GEOM, V18, P755
[3]  
CAMPANA F, 1992, J REINE ANGEW MATH, V425, P1
[4]  
Demailly J.-P., 1997, Proc. Symp. Pure Math., V62, P285
[5]   CALABI-YAU THREEFOLDS WITH RHO-GREATER-THAN-13 [J].
HEATHBROWN, DR ;
WILSON, PMH .
MATHEMATISCHE ANNALEN, 1992, 294 (01) :49-57
[6]   ON THE LENGTH OF AN EXTREMAL RATIONAL CURVE [J].
KAWAMATA, Y .
INVENTIONES MATHEMATICAE, 1991, 105 (03) :609-611
[7]  
Keel S, 2004, DUKE MATH J, V122, P625
[8]   LOG ABUNDANCE THEOREM FOR THREEFOLDS [J].
KEEL, S ;
MATSUKI, K ;
MCKERNAN, J .
DUKE MATHEMATICAL JOURNAL, 1994, 75 (01) :99-119
[9]  
Kobayashi S., 1987, ADV STUD PURE MATH
[10]  
Kobayashi S., 1987, Differential Geometry o f Complex Vector Bundles