Equivariant differential operators on spinors in conformal geometry

被引:1
作者
Krizka, Libor [1 ]
Somberg, Petr [1 ]
机构
[1] Charles Univ Prague, Math Inst, Fac Math & Phys, Prague, Czech Republic
关键词
Conformal structure; D-modules; spinor representation; generalized Verma modules; conformally equivariant differential operators; VERMA MODULES;
D O I
10.1080/17476933.2016.1234461
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a novel approach to the classification of conformally equivariant differential operators on spinors in the case of homogeneous conformal geometry. It is based on the classification of solutions for a vector-valued system of partial differential equations, associated to D-modules for the homogeneous conformal structure and controlled by the spin Howe duality for the orthogonal Lie algebras.
引用
收藏
页码:583 / 599
页数:17
相关论文
共 12 条
[1]  
[Anonymous], 1991, TEUBNER TEXTE MATH
[2]   A COMPARISON THEORY FOR THE STRUCTURE OF INDUCED REPRESENTATIONS .2. [J].
BOE, BD ;
COLLINGWOOD, DH .
MATHEMATISCHE ZEITSCHRIFT, 1985, 190 (01) :1-11
[3]   A DUALITY THEOREM FOR EXTENSIONS OF INDUCED HIGHEST WEIGHT MODULES [J].
COLLINGWOOD, DH ;
SHELTON, B .
PACIFIC JOURNAL OF MATHEMATICS, 1990, 146 (02) :227-237
[4]  
Curry S., 2014, ARXIV14127559
[5]  
Delanghe R., 1992, MATH ITS APPL, V53
[6]   Semiholonomic verma modules [J].
Eastwood, M ;
Slovak, J .
JOURNAL OF ALGEBRA, 1997, 197 (02) :424-448
[7]   ON CONFORMAL POWERS OF THE DIRAC OPERATOR ON SPIN MANIFOLDS [J].
Fischmann, Matthias .
ARCHIVUM MATHEMATICUM, 2014, 50 (04) :237-253
[8]  
Friedrich T., 2000, Graduate Studies in Mathematics, V25
[9]  
Kika L, 2015, TRANSFORMAT IN PRESS
[10]   Branching laws for Verma modules and applications in parabolic geometry. I [J].
Kobayashi, Toshiyuki ;
Orsted, Bent ;
Somberg, Petr ;
Soucek, Vladimir .
ADVANCES IN MATHEMATICS, 2015, 285 :1796-1852