EXISTENCE OF OPTICAL VORTICES

被引:9
作者
Yang, Yisong [1 ]
Zhang, Ruifeng [2 ]
机构
[1] NYU, Polytech Inst, Dept Math, Brooklyn, NY 11201 USA
[2] Henan Univ, Sch Math, Inst Contemporary Math, Kaifeng 475004, Henan, Peoples R China
关键词
optical vortices; Schrodinger equations; minimization; Palais-Smale condition; mountain-pass theorem; ANGULAR-MOMENTUM; VORTEX SOLITONS; BEAMS; DYNAMICS; PROPAGATION; LIGHT;
D O I
10.1137/120894105
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Optical vortices arise as phase singularities of the light fields and are of central interest in modern optical physics. In this paper, some existence theorems are established for stationary vortex wave solutions of a general class of nonlinear Schrodinger equations. There are two types of results. The first type concerns the existence of positive-radial-profile solutions, which are obtained through a constrained minimization approach. The second type addresses the existence of saddle-point solutions through a mountain-pass theorem or min-max method so that the wave propagation constant may be arbitrarily prescribed in an open interval. Furthermore, some explicit estimates for the lower bound and sign of the wave propagation constant with respect to the light beam power and vortex winding number are also derived for the first type of solution.
引用
收藏
页码:484 / 498
页数:15
相关论文
共 43 条
[1]   Localization of a Bose-Einstein-condensate vortex in a bichromatic optical lattice [J].
Adhikari, S. K. .
PHYSICAL REVIEW A, 2010, 81 (04)
[2]   ORBITAL ANGULAR-MOMENTUM OF LIGHT AND THE TRANSFORMATION OF LAGUERRE-GAUSSIAN LASER MODES [J].
ALLEN, L ;
BEIJERSBERGEN, MW ;
SPREEUW, RJC ;
WOERDMAN, JP .
PHYSICAL REVIEW A, 1992, 45 (11) :8185-8189
[3]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[4]  
[Anonymous], 1977, Grundlagen der mathematischen Wissenschaften
[5]   Local observations of phase singularities in optical fields in waveguide structures [J].
Balistreri, MLM ;
Korterik, JP ;
Kuipers, L ;
van Hulst, NF .
PHYSICAL REVIEW LETTERS, 2000, 85 (02) :294-297
[6]  
Bekshaev A., 2005, Ukr. J. Phys., V2, P73
[7]  
Bethuel F., 1994, Progress in Nonlinear Differential Equations and Their Applications, V13
[8]   SELF-TRAPPING OF OPTICAL BEAMS [J].
CHIAO, RY ;
GARMIRE, E ;
TOWNES, CH .
PHYSICAL REVIEW LETTERS, 1964, 13 (15) :479-&
[9]   Structure of optical vortices [J].
Curtis, JE ;
Grier, DG .
PHYSICAL REVIEW LETTERS, 2003, 90 (13) :4
[10]   Stable multicharged localized optical vortices in cubic-quintic nonlinear media [J].
Davydova, TA ;
Yakimenko, AI .
JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS, 2004, 6 (05) :S197-S201